采用自动车牌检测系统的YOLO算法和TESSERACT OCR算法

Imam Husni Al amin, Awan Aprilino
{"title":"采用自动车牌检测系统的YOLO算法和TESSERACT OCR算法","authors":"Imam Husni Al amin, Awan Aprilino","doi":"10.33365/jti.v16i1.1522","DOIUrl":null,"url":null,"abstract":"Currently, vehicle number plate detection systems in general still use the manual method. This will take a lot of time and human effort. Thus, an automatic vehicle number plate detection system is needed because the number of vehicles that continues to increase will burden human labor. In addition, the methods used for vehicle number plate detection still have low accuracy because they depend on the characteristics of the object being used. This study develops a YOLO-based automatic vehicle number plate detection system. The dataset used is a pretrained YOLOv3 model of 700 data. Then proceed with the number plate text extraction process using the Tesseract Optical Character Recognition (OCR) library and the results obtained will be stored in the database. This system is web-based and API so that it can be used online and on the cross-platform. The test results show that the automatic number plate detection system reaches 100% accuracy with sufficient lighting and a threshold of 0.5 and for the results using the Tesseract library, the detection results are 92.32% where the system is successful in recognizing all characters on the license plates of cars and motorcycles. in the form of Alphanumeric characters of 7-8 characters.","PeriodicalId":344455,"journal":{"name":"Jurnal Teknoinfo","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"IMPLEMENTASI ALGORITMA YOLO DAN TESSERACT OCR PADA SISTEM DETEKSI PLAT NOMOR OTOMATIS\",\"authors\":\"Imam Husni Al amin, Awan Aprilino\",\"doi\":\"10.33365/jti.v16i1.1522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, vehicle number plate detection systems in general still use the manual method. This will take a lot of time and human effort. Thus, an automatic vehicle number plate detection system is needed because the number of vehicles that continues to increase will burden human labor. In addition, the methods used for vehicle number plate detection still have low accuracy because they depend on the characteristics of the object being used. This study develops a YOLO-based automatic vehicle number plate detection system. The dataset used is a pretrained YOLOv3 model of 700 data. Then proceed with the number plate text extraction process using the Tesseract Optical Character Recognition (OCR) library and the results obtained will be stored in the database. This system is web-based and API so that it can be used online and on the cross-platform. The test results show that the automatic number plate detection system reaches 100% accuracy with sufficient lighting and a threshold of 0.5 and for the results using the Tesseract library, the detection results are 92.32% where the system is successful in recognizing all characters on the license plates of cars and motorcycles. in the form of Alphanumeric characters of 7-8 characters.\",\"PeriodicalId\":344455,\"journal\":{\"name\":\"Jurnal Teknoinfo\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknoinfo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33365/jti.v16i1.1522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknoinfo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33365/jti.v16i1.1522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

目前,车辆号牌检测系统一般仍采用人工方法。这将花费大量的时间和人力。因此,由于车辆数量的不断增加将增加人力的负担,因此需要自动车牌检测系统。此外,用于车牌检测的方法仍然具有较低的准确性,因为它们依赖于所使用对象的特征。本研究开发了一个基于yolo的车牌自动检测系统。使用的数据集是700个数据的预训练YOLOv3模型。然后使用Tesseract光学字符识别(OCR)库进行车牌文本提取过程,得到的结果将存储在数据库中。该系统是基于web和API的,因此它可以在线和跨平台使用。测试结果表明,在光照充足、阈值为0.5的情况下,车牌自动检测系统的准确率达到100%,使用Tesseract库的结果,检测结果为92.32%,系统成功识别了汽车和摩托车车牌上的所有字符。以7-8个字符的字母数字字符的形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IMPLEMENTASI ALGORITMA YOLO DAN TESSERACT OCR PADA SISTEM DETEKSI PLAT NOMOR OTOMATIS
Currently, vehicle number plate detection systems in general still use the manual method. This will take a lot of time and human effort. Thus, an automatic vehicle number plate detection system is needed because the number of vehicles that continues to increase will burden human labor. In addition, the methods used for vehicle number plate detection still have low accuracy because they depend on the characteristics of the object being used. This study develops a YOLO-based automatic vehicle number plate detection system. The dataset used is a pretrained YOLOv3 model of 700 data. Then proceed with the number plate text extraction process using the Tesseract Optical Character Recognition (OCR) library and the results obtained will be stored in the database. This system is web-based and API so that it can be used online and on the cross-platform. The test results show that the automatic number plate detection system reaches 100% accuracy with sufficient lighting and a threshold of 0.5 and for the results using the Tesseract library, the detection results are 92.32% where the system is successful in recognizing all characters on the license plates of cars and motorcycles. in the form of Alphanumeric characters of 7-8 characters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信