TDML:用于事务数据库的数据挖掘语言

A. Muthukumar, R. Nadarajan
{"title":"TDML:用于事务数据库的数据挖掘语言","authors":"A. Muthukumar, R. Nadarajan","doi":"10.1109/FSKD.2007.558","DOIUrl":null,"url":null,"abstract":"A desired feature of data mining systems is the ability to support ad hoc and interactive data mining in order to facilitate flexible and effective knowledge discovery. Data mining query languages can be designed to support such a feature. There are data mining query languages like DMQLfor mining relational databases. In this paper, we have proposed a new data mining language for mining transaction databases called TDML. This proposed language mines association rule mining and sequential pattern mining. It uses a new bit map processing approach with buffered storage of results. Various types of data mining approaches that are supported like generalized mining, multilevel mining, multidimensional mining, distributed mining, partition mining, incremental mining, online mining, merge mining, transaction reduction, stream mining and targeted itemset mining.","PeriodicalId":201883,"journal":{"name":"Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"TDML: A Data Mining Language for Transaction Databases\",\"authors\":\"A. Muthukumar, R. Nadarajan\",\"doi\":\"10.1109/FSKD.2007.558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A desired feature of data mining systems is the ability to support ad hoc and interactive data mining in order to facilitate flexible and effective knowledge discovery. Data mining query languages can be designed to support such a feature. There are data mining query languages like DMQLfor mining relational databases. In this paper, we have proposed a new data mining language for mining transaction databases called TDML. This proposed language mines association rule mining and sequential pattern mining. It uses a new bit map processing approach with buffered storage of results. Various types of data mining approaches that are supported like generalized mining, multilevel mining, multidimensional mining, distributed mining, partition mining, incremental mining, online mining, merge mining, transaction reduction, stream mining and targeted itemset mining.\",\"PeriodicalId\":201883,\"journal\":{\"name\":\"Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSKD.2007.558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2007.558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

数据挖掘系统的一个理想特性是能够支持特别的和交互式的数据挖掘,以促进灵活和有效的知识发现。可以设计数据挖掘查询语言来支持这种特性。有像dmql这样的数据挖掘查询语言用于挖掘关系数据库。在本文中,我们提出了一种新的用于挖掘事务数据库的数据挖掘语言TDML。该语言挖掘关联规则挖掘和顺序模式挖掘。它采用了一种新的位图处理方法,对结果进行缓冲存储。支持各种类型的数据挖掘方法,如广义挖掘、多层挖掘、多维挖掘、分布式挖掘、分区挖掘、增量挖掘、在线挖掘、合并挖掘、事务减少、流挖掘和目标项集挖掘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TDML: A Data Mining Language for Transaction Databases
A desired feature of data mining systems is the ability to support ad hoc and interactive data mining in order to facilitate flexible and effective knowledge discovery. Data mining query languages can be designed to support such a feature. There are data mining query languages like DMQLfor mining relational databases. In this paper, we have proposed a new data mining language for mining transaction databases called TDML. This proposed language mines association rule mining and sequential pattern mining. It uses a new bit map processing approach with buffered storage of results. Various types of data mining approaches that are supported like generalized mining, multilevel mining, multidimensional mining, distributed mining, partition mining, incremental mining, online mining, merge mining, transaction reduction, stream mining and targeted itemset mining.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信