基于Grubbs准则的大规模光曲线预测和实时异常检测的深度学习方法

Xiaodong Huang, Lei Peng, Cheng Lu, J. Bi, Haitao Yuan
{"title":"基于Grubbs准则的大规模光曲线预测和实时异常检测的深度学习方法","authors":"Xiaodong Huang, Lei Peng, Cheng Lu, J. Bi, Haitao Yuan","doi":"10.1109/ICNSC48988.2020.9238105","DOIUrl":null,"url":null,"abstract":"In light curves (LCs), the brightness of stars is associated with time, and so is its image. The traditional data processing methods cannot effectively handle real-time and large-volume data of various LCs. To address this issue, this work develops a deep neural network named Dropout-based Recurrent Neural Networks (DRNN). It extracts complicated features of all images captured by Mini Ground-based Wide-Angle Camera array (Mini-GWAC) for point source extraction and cross-certification through Long Short-Term Memory units. DRNN can also produce warnings for abnormal values of light change curves. Furthermore, this work optimizes the training model by combining a dropout method with an adaptive moment estimation algorithm to iteratively update the network weight of the RNN based on the LCs data. Extensive experiments with a Mini-GWAC dataset demonstrate that DRNN outperforms several typical methods in terms of prediction performance of star brightness in large-scale astronomical LCs.","PeriodicalId":412290,"journal":{"name":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep Learning Approach to Large-Scale Light Curve Prediction and Real-Time Anomaly Detection with Grubbs Criterion\",\"authors\":\"Xiaodong Huang, Lei Peng, Cheng Lu, J. Bi, Haitao Yuan\",\"doi\":\"10.1109/ICNSC48988.2020.9238105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In light curves (LCs), the brightness of stars is associated with time, and so is its image. The traditional data processing methods cannot effectively handle real-time and large-volume data of various LCs. To address this issue, this work develops a deep neural network named Dropout-based Recurrent Neural Networks (DRNN). It extracts complicated features of all images captured by Mini Ground-based Wide-Angle Camera array (Mini-GWAC) for point source extraction and cross-certification through Long Short-Term Memory units. DRNN can also produce warnings for abnormal values of light change curves. Furthermore, this work optimizes the training model by combining a dropout method with an adaptive moment estimation algorithm to iteratively update the network weight of the RNN based on the LCs data. Extensive experiments with a Mini-GWAC dataset demonstrate that DRNN outperforms several typical methods in terms of prediction performance of star brightness in large-scale astronomical LCs.\",\"PeriodicalId\":412290,\"journal\":{\"name\":\"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSC48988.2020.9238105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC48988.2020.9238105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在光曲线(lc)中,恒星的亮度与时间有关,其图像也与时间有关。传统的数据处理方法不能有效地处理各种lc的实时、大容量数据。为了解决这个问题,这项工作开发了一个深度神经网络,名为基于dropout的递归神经网络(DRNN)。它通过长短期记忆单元,提取迷你陆基广角相机阵列(Mini- gwac)捕获的所有图像的复杂特征,进行点源提取和交叉认证。DRNN还可以对光变化曲线的异常值产生预警。此外,本文还对训练模型进行了优化,将dropout方法与自适应矩估计算法相结合,基于LCs数据迭代更新RNN的网络权重。在Mini-GWAC数据集上进行的大量实验表明,在大规模天文LCs中,DRNN在预测恒星亮度方面优于几种典型方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deep Learning Approach to Large-Scale Light Curve Prediction and Real-Time Anomaly Detection with Grubbs Criterion
In light curves (LCs), the brightness of stars is associated with time, and so is its image. The traditional data processing methods cannot effectively handle real-time and large-volume data of various LCs. To address this issue, this work develops a deep neural network named Dropout-based Recurrent Neural Networks (DRNN). It extracts complicated features of all images captured by Mini Ground-based Wide-Angle Camera array (Mini-GWAC) for point source extraction and cross-certification through Long Short-Term Memory units. DRNN can also produce warnings for abnormal values of light change curves. Furthermore, this work optimizes the training model by combining a dropout method with an adaptive moment estimation algorithm to iteratively update the network weight of the RNN based on the LCs data. Extensive experiments with a Mini-GWAC dataset demonstrate that DRNN outperforms several typical methods in terms of prediction performance of star brightness in large-scale astronomical LCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信