{"title":"道路环境中高性能、快速的目标检测","authors":"M. Kang, Y. Lim","doi":"10.1109/IPTA.2017.8310148","DOIUrl":null,"url":null,"abstract":"In this paper, we present a high performance and fast object detection method based on a fully convolutional network (FCN) for advanced driver assistance systems (ADAS). Object detection methods based on deep learning have high performance but they require high computational complexity. Even if a method works on the high-performance graphics processing unit (GPU) hardware platform, it is hard to guarantee real-time processing. General object detectors based on deep learning try to localize too many classes of objects in various dynamic environments. The proposed detection method based on FCN improves detection performance and maintains real-time processing in road environments through various schemes related to the limitation of object class type, data augmentation, network architecture, and multi-ratio default boxes. Our experimental results show that the proposed method outperforms a previous method both in terms of performance and speed.","PeriodicalId":316356,"journal":{"name":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"High performance and fast object detection in road environments\",\"authors\":\"M. Kang, Y. Lim\",\"doi\":\"10.1109/IPTA.2017.8310148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a high performance and fast object detection method based on a fully convolutional network (FCN) for advanced driver assistance systems (ADAS). Object detection methods based on deep learning have high performance but they require high computational complexity. Even if a method works on the high-performance graphics processing unit (GPU) hardware platform, it is hard to guarantee real-time processing. General object detectors based on deep learning try to localize too many classes of objects in various dynamic environments. The proposed detection method based on FCN improves detection performance and maintains real-time processing in road environments through various schemes related to the limitation of object class type, data augmentation, network architecture, and multi-ratio default boxes. Our experimental results show that the proposed method outperforms a previous method both in terms of performance and speed.\",\"PeriodicalId\":316356,\"journal\":{\"name\":\"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"176 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2017.8310148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2017.8310148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High performance and fast object detection in road environments
In this paper, we present a high performance and fast object detection method based on a fully convolutional network (FCN) for advanced driver assistance systems (ADAS). Object detection methods based on deep learning have high performance but they require high computational complexity. Even if a method works on the high-performance graphics processing unit (GPU) hardware platform, it is hard to guarantee real-time processing. General object detectors based on deep learning try to localize too many classes of objects in various dynamic environments. The proposed detection method based on FCN improves detection performance and maintains real-time processing in road environments through various schemes related to the limitation of object class type, data augmentation, network architecture, and multi-ratio default boxes. Our experimental results show that the proposed method outperforms a previous method both in terms of performance and speed.