道路环境中高性能、快速的目标检测

M. Kang, Y. Lim
{"title":"道路环境中高性能、快速的目标检测","authors":"M. Kang, Y. Lim","doi":"10.1109/IPTA.2017.8310148","DOIUrl":null,"url":null,"abstract":"In this paper, we present a high performance and fast object detection method based on a fully convolutional network (FCN) for advanced driver assistance systems (ADAS). Object detection methods based on deep learning have high performance but they require high computational complexity. Even if a method works on the high-performance graphics processing unit (GPU) hardware platform, it is hard to guarantee real-time processing. General object detectors based on deep learning try to localize too many classes of objects in various dynamic environments. The proposed detection method based on FCN improves detection performance and maintains real-time processing in road environments through various schemes related to the limitation of object class type, data augmentation, network architecture, and multi-ratio default boxes. Our experimental results show that the proposed method outperforms a previous method both in terms of performance and speed.","PeriodicalId":316356,"journal":{"name":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"High performance and fast object detection in road environments\",\"authors\":\"M. Kang, Y. Lim\",\"doi\":\"10.1109/IPTA.2017.8310148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a high performance and fast object detection method based on a fully convolutional network (FCN) for advanced driver assistance systems (ADAS). Object detection methods based on deep learning have high performance but they require high computational complexity. Even if a method works on the high-performance graphics processing unit (GPU) hardware platform, it is hard to guarantee real-time processing. General object detectors based on deep learning try to localize too many classes of objects in various dynamic environments. The proposed detection method based on FCN improves detection performance and maintains real-time processing in road environments through various schemes related to the limitation of object class type, data augmentation, network architecture, and multi-ratio default boxes. Our experimental results show that the proposed method outperforms a previous method both in terms of performance and speed.\",\"PeriodicalId\":316356,\"journal\":{\"name\":\"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"176 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2017.8310148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2017.8310148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们提出了一种基于全卷积网络(FCN)的高性能快速目标检测方法,用于高级驾驶辅助系统(ADAS)。基于深度学习的目标检测方法具有较高的性能,但其计算复杂度较高。即使一种方法在高性能图形处理单元(GPU)硬件平台上工作,也很难保证实时处理。基于深度学习的一般对象检测器试图在各种动态环境中定位太多类别的对象。本文提出的基于FCN的检测方法通过对象类类型限制、数据增强、网络架构、多比例默认框等多种方案,提高了道路环境下的检测性能,保持了实时处理。实验结果表明,该方法在性能和速度上都优于先前的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High performance and fast object detection in road environments
In this paper, we present a high performance and fast object detection method based on a fully convolutional network (FCN) for advanced driver assistance systems (ADAS). Object detection methods based on deep learning have high performance but they require high computational complexity. Even if a method works on the high-performance graphics processing unit (GPU) hardware platform, it is hard to guarantee real-time processing. General object detectors based on deep learning try to localize too many classes of objects in various dynamic environments. The proposed detection method based on FCN improves detection performance and maintains real-time processing in road environments through various schemes related to the limitation of object class type, data augmentation, network architecture, and multi-ratio default boxes. Our experimental results show that the proposed method outperforms a previous method both in terms of performance and speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信