在线教育的可视化分析技术调查

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xiaoyan Kui, Naiming Liu, Qiang Liu, Jingwei Liu, Xiaoqian Zeng, Chao Zhang
{"title":"在线教育的可视化分析技术调查","authors":"Xiaoyan Kui,&nbsp;Naiming Liu,&nbsp;Qiang Liu,&nbsp;Jingwei Liu,&nbsp;Xiaoqian Zeng,&nbsp;Chao Zhang","doi":"10.1016/j.visinf.2022.07.004","DOIUrl":null,"url":null,"abstract":"<div><p>Visual analytics techniques are widely utilized to facilitate the exploration of online educational data. To help researchers better understand the necessity and the efficiency of these techniques in online education, we systematically review related works of the past decade to provide a comprehensive view of the use of visualization in online education problems. We establish a taxonomy based on the analysis goal and classify the existing visual analytics techniques into four categories: learning behavior analysis, learning content analysis, analysis of interactions among students, and prediction and recommendation. The use of visual analytics techniques is summarized in each category to show their benefits in different analysis tasks. At last, we discuss the future research opportunities and challenges in the utilization of visual analytics techniques for online education.</p></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"6 4","pages":"Pages 67-77"},"PeriodicalIF":3.8000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468502X22000870/pdfft?md5=9da41107a6cadbfebb837a6957330648&pid=1-s2.0-S2468502X22000870-main.pdf","citationCount":"3","resultStr":"{\"title\":\"A survey of visual analytics techniques for online education\",\"authors\":\"Xiaoyan Kui,&nbsp;Naiming Liu,&nbsp;Qiang Liu,&nbsp;Jingwei Liu,&nbsp;Xiaoqian Zeng,&nbsp;Chao Zhang\",\"doi\":\"10.1016/j.visinf.2022.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Visual analytics techniques are widely utilized to facilitate the exploration of online educational data. To help researchers better understand the necessity and the efficiency of these techniques in online education, we systematically review related works of the past decade to provide a comprehensive view of the use of visualization in online education problems. We establish a taxonomy based on the analysis goal and classify the existing visual analytics techniques into four categories: learning behavior analysis, learning content analysis, analysis of interactions among students, and prediction and recommendation. The use of visual analytics techniques is summarized in each category to show their benefits in different analysis tasks. At last, we discuss the future research opportunities and challenges in the utilization of visual analytics techniques for online education.</p></div>\",\"PeriodicalId\":36903,\"journal\":{\"name\":\"Visual Informatics\",\"volume\":\"6 4\",\"pages\":\"Pages 67-77\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468502X22000870/pdfft?md5=9da41107a6cadbfebb837a6957330648&pid=1-s2.0-S2468502X22000870-main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Informatics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468502X22000870\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X22000870","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3

摘要

可视化分析技术被广泛用于促进在线教育数据的探索。为了帮助研究人员更好地理解这些技术在在线教育中的必要性和效率,我们系统地回顾了过去十年的相关工作,以提供可视化在在线教育问题中的应用的全面观点。我们基于分析目标建立了分类法,将现有的可视化分析技术分为四类:学习行为分析、学习内容分析、学生互动分析、预测与推荐。在每个类别中总结了可视化分析技术的使用,以显示它们在不同分析任务中的好处。最后,我们讨论了可视化分析技术在在线教育中应用的未来研究机遇和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A survey of visual analytics techniques for online education

Visual analytics techniques are widely utilized to facilitate the exploration of online educational data. To help researchers better understand the necessity and the efficiency of these techniques in online education, we systematically review related works of the past decade to provide a comprehensive view of the use of visualization in online education problems. We establish a taxonomy based on the analysis goal and classify the existing visual analytics techniques into four categories: learning behavior analysis, learning content analysis, analysis of interactions among students, and prediction and recommendation. The use of visual analytics techniques is summarized in each category to show their benefits in different analysis tasks. At last, we discuss the future research opportunities and challenges in the utilization of visual analytics techniques for online education.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信