基于经验模态分解的低频信号噪声消除

M. D. Elbi, Aydin Kizilkaya
{"title":"基于经验模态分解的低频信号噪声消除","authors":"M. D. Elbi, Aydin Kizilkaya","doi":"10.1109/SIU.2012.6204684","DOIUrl":null,"url":null,"abstract":"In this study, the noise cancellation problem on noise corrupted low-frequency signals by using the Empirical Mode Decomposition (EMD) method is considered. For this aim, the Intrinsic Mode (IM) functions of the low-frequency signal corrupted by white Gaussian noise are obtained by applying EMD on this signal. Savitzky-Golay filter and Least Squares Support Vector Machine (LS-SVM) regression are separately applied to the signal reconstructed using the low-frequency ones of the IM functions, and the estimation performance of the original noiseless signal is examined. It is observed from the simulations that a satisfactory result is achieved via LS-SVM regression.","PeriodicalId":256154,"journal":{"name":"2012 20th Signal Processing and Communications Applications Conference (SIU)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Noise cancellation on low-frequency signals using Empirical Mode Decomposition\",\"authors\":\"M. D. Elbi, Aydin Kizilkaya\",\"doi\":\"10.1109/SIU.2012.6204684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the noise cancellation problem on noise corrupted low-frequency signals by using the Empirical Mode Decomposition (EMD) method is considered. For this aim, the Intrinsic Mode (IM) functions of the low-frequency signal corrupted by white Gaussian noise are obtained by applying EMD on this signal. Savitzky-Golay filter and Least Squares Support Vector Machine (LS-SVM) regression are separately applied to the signal reconstructed using the low-frequency ones of the IM functions, and the estimation performance of the original noiseless signal is examined. It is observed from the simulations that a satisfactory result is achieved via LS-SVM regression.\",\"PeriodicalId\":256154,\"journal\":{\"name\":\"2012 20th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 20th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2012.6204684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 20th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2012.6204684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了利用经验模态分解(EMD)方法对噪声污染的低频信号进行消噪问题。为此,对被高斯白噪声破坏的低频信号进行EMD处理,得到其固有模态函数。分别采用Savitzky-Golay滤波和最小二乘支持向量机(Least Squares Support Vector Machine, LS-SVM)回归对IM函数的低频重构信号进行处理,并检验原始无噪声信号的估计性能。仿真结果表明,LS-SVM回归得到了满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noise cancellation on low-frequency signals using Empirical Mode Decomposition
In this study, the noise cancellation problem on noise corrupted low-frequency signals by using the Empirical Mode Decomposition (EMD) method is considered. For this aim, the Intrinsic Mode (IM) functions of the low-frequency signal corrupted by white Gaussian noise are obtained by applying EMD on this signal. Savitzky-Golay filter and Least Squares Support Vector Machine (LS-SVM) regression are separately applied to the signal reconstructed using the low-frequency ones of the IM functions, and the estimation performance of the original noiseless signal is examined. It is observed from the simulations that a satisfactory result is achieved via LS-SVM regression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信