用树来编码联合决策中的不确定性

Nishant Yadav, Nicholas Monath, Rico Angell, A. McCallum
{"title":"用树来编码联合决策中的不确定性","authors":"Nishant Yadav, Nicholas Monath, Rico Angell, A. McCallum","doi":"10.18653/v1/2021.crac-1.11","DOIUrl":null,"url":null,"abstract":"Coreference decisions among event mentions and among co-occurring entity mentions are highly interdependent, thus motivating joint inference. Capturing the uncertainty over each variable can be crucial for inference among multiple dependent variables. Previous work on joint coreference employs heuristic approaches, lacking well-defined objectives, and lacking modeling of uncertainty on each side of the joint problem. We present a new approach of joint coreference, including (1) a formal cost function inspired by Dasgupta’s cost for hierarchical clustering, and (2) a representation for uncertainty of clustering of event and entity mentions, again based on a hierarchical structure. We describe an alternating optimization method for inference that when clustering event mentions, considers the uncertainty of the clustering of entity mentions and vice-versa. We show that our proposed joint model provides empirical advantages over state-of-the-art independent and joint models.","PeriodicalId":447425,"journal":{"name":"Proceedings of the Fourth Workshop on Computational Models of Reference, Anaphora and Coreference","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Event and Entity Coreference using Trees to Encode Uncertainty in Joint Decisions\",\"authors\":\"Nishant Yadav, Nicholas Monath, Rico Angell, A. McCallum\",\"doi\":\"10.18653/v1/2021.crac-1.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coreference decisions among event mentions and among co-occurring entity mentions are highly interdependent, thus motivating joint inference. Capturing the uncertainty over each variable can be crucial for inference among multiple dependent variables. Previous work on joint coreference employs heuristic approaches, lacking well-defined objectives, and lacking modeling of uncertainty on each side of the joint problem. We present a new approach of joint coreference, including (1) a formal cost function inspired by Dasgupta’s cost for hierarchical clustering, and (2) a representation for uncertainty of clustering of event and entity mentions, again based on a hierarchical structure. We describe an alternating optimization method for inference that when clustering event mentions, considers the uncertainty of the clustering of entity mentions and vice-versa. We show that our proposed joint model provides empirical advantages over state-of-the-art independent and joint models.\",\"PeriodicalId\":447425,\"journal\":{\"name\":\"Proceedings of the Fourth Workshop on Computational Models of Reference, Anaphora and Coreference\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fourth Workshop on Computational Models of Reference, Anaphora and Coreference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2021.crac-1.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth Workshop on Computational Models of Reference, Anaphora and Coreference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.crac-1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

事件提及和共同发生的实体提及之间的共同参照决策是高度相互依赖的,从而激发联合推理。捕获每个变量的不确定性对于多个因变量之间的推理至关重要。先前关于联合共参考的工作采用启发式方法,缺乏明确的目标,并且缺乏对联合问题各方面的不确定性的建模。我们提出了一种新的联合共参考方法,包括(1)受Dasgupta分层聚类成本启发的形式成本函数,以及(2)基于分层结构的事件和实体提及的聚类不确定性表示。我们描述了一种交替优化的推理方法,当聚类事件提及时,考虑实体提及聚类的不确定性,反之亦然。我们表明,我们提出的联合模型比最先进的独立模型和联合模型提供了经验优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Event and Entity Coreference using Trees to Encode Uncertainty in Joint Decisions
Coreference decisions among event mentions and among co-occurring entity mentions are highly interdependent, thus motivating joint inference. Capturing the uncertainty over each variable can be crucial for inference among multiple dependent variables. Previous work on joint coreference employs heuristic approaches, lacking well-defined objectives, and lacking modeling of uncertainty on each side of the joint problem. We present a new approach of joint coreference, including (1) a formal cost function inspired by Dasgupta’s cost for hierarchical clustering, and (2) a representation for uncertainty of clustering of event and entity mentions, again based on a hierarchical structure. We describe an alternating optimization method for inference that when clustering event mentions, considers the uncertainty of the clustering of entity mentions and vice-versa. We show that our proposed joint model provides empirical advantages over state-of-the-art independent and joint models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信