采用多项式插值的非线性多目标多伯努利滤波器

Jianjun Yin, Jian Qiu Zhang
{"title":"采用多项式插值的非线性多目标多伯努利滤波器","authors":"Jianjun Yin, Jian Qiu Zhang","doi":"10.1109/ICOSP.2010.5656888","DOIUrl":null,"url":null,"abstract":"We present a new multi-target filtering recursion for nonlinear models, termed as the central difference multi-target multi-Bernoulli (CD-MeMBer) filter. Provided that the state and measurement noises are Gaussian, Sterling's polynomial interpolation formula is used in deriving the filter under the assumption that the initial prior multi-Bernoulli multi-target density is given and each probability density is comprised of a Gaussian sum. The tracking performances verify the effectiveness of the proposed CD-MeMBer filter.","PeriodicalId":281876,"journal":{"name":"IEEE 10th INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The nonlinear multi-target multi-bernoulli filter using polynomial interpolation\",\"authors\":\"Jianjun Yin, Jian Qiu Zhang\",\"doi\":\"10.1109/ICOSP.2010.5656888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new multi-target filtering recursion for nonlinear models, termed as the central difference multi-target multi-Bernoulli (CD-MeMBer) filter. Provided that the state and measurement noises are Gaussian, Sterling's polynomial interpolation formula is used in deriving the filter under the assumption that the initial prior multi-Bernoulli multi-target density is given and each probability density is comprised of a Gaussian sum. The tracking performances verify the effectiveness of the proposed CD-MeMBer filter.\",\"PeriodicalId\":281876,\"journal\":{\"name\":\"IEEE 10th INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE 10th INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.2010.5656888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 10th INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2010.5656888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种新的非线性模型多目标递推滤波方法,称为中心差分多目标多伯努利(CD-MeMBer)滤波器。在状态噪声和测量噪声均为高斯噪声的情况下,假设给定初始先验多重伯努利多目标密度,每个概率密度由高斯和构成,采用Sterling多项式插值公式推导滤波器。跟踪性能验证了所提CD-MeMBer滤波器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The nonlinear multi-target multi-bernoulli filter using polynomial interpolation
We present a new multi-target filtering recursion for nonlinear models, termed as the central difference multi-target multi-Bernoulli (CD-MeMBer) filter. Provided that the state and measurement noises are Gaussian, Sterling's polynomial interpolation formula is used in deriving the filter under the assumption that the initial prior multi-Bernoulli multi-target density is given and each probability density is comprised of a Gaussian sum. The tracking performances verify the effectiveness of the proposed CD-MeMBer filter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信