考虑堆芯熔毁事故的反应堆容器下封头热结构分析

Juan Luo, Jia-cheng Luo, Lei Sun, Peng Tang
{"title":"考虑堆芯熔毁事故的反应堆容器下封头热结构分析","authors":"Juan Luo, Jia-cheng Luo, Lei Sun, Peng Tang","doi":"10.1115/PVP2018-85101","DOIUrl":null,"url":null,"abstract":"In the core meltdown severe accident, in-vessel retention (IVR) of molten core debris by external reactor vessel cooling (ERVC) is an important mitigation strategy. During the IVR strategy, the core debris forming a melt pool in the reactor pressure vessel (RPV) lower head (LH) will produce extremely high thermal and mechanical loadings to the RPV, which may cause the failure of RPV due to over-deformation of plasticity or creep. Therefore, it is necessary to study the thermomechanical behavior of the reactor vessel LH during IVR condition. In this paper, under the assumption of IVR-ERVC, the thermal and structural analysis for the RPV lower head is completed by finite element method. The temperature field and stress field of the RPV wall, and the plastic deformation and creep deformation of the lower head are obtained by calculation. Plasticity and creep failure analysis is conducted as well. Results show that under the assumed conditions, the head will not fail due to excessive creep deformation within 200 hours. The results can provide basis for structural integrity analysis of pressure vessels.","PeriodicalId":384066,"journal":{"name":"Volume 3B: Design and Analysis","volume":"33 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal and Structural Analysis of Reactor Vessel Lower Head Considering Core Meltdown Accident\",\"authors\":\"Juan Luo, Jia-cheng Luo, Lei Sun, Peng Tang\",\"doi\":\"10.1115/PVP2018-85101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the core meltdown severe accident, in-vessel retention (IVR) of molten core debris by external reactor vessel cooling (ERVC) is an important mitigation strategy. During the IVR strategy, the core debris forming a melt pool in the reactor pressure vessel (RPV) lower head (LH) will produce extremely high thermal and mechanical loadings to the RPV, which may cause the failure of RPV due to over-deformation of plasticity or creep. Therefore, it is necessary to study the thermomechanical behavior of the reactor vessel LH during IVR condition. In this paper, under the assumption of IVR-ERVC, the thermal and structural analysis for the RPV lower head is completed by finite element method. The temperature field and stress field of the RPV wall, and the plastic deformation and creep deformation of the lower head are obtained by calculation. Plasticity and creep failure analysis is conducted as well. Results show that under the assumed conditions, the head will not fail due to excessive creep deformation within 200 hours. The results can provide basis for structural integrity analysis of pressure vessels.\",\"PeriodicalId\":384066,\"journal\":{\"name\":\"Volume 3B: Design and Analysis\",\"volume\":\"33 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3B: Design and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/PVP2018-85101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3B: Design and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-85101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在堆芯熔毁严重事故中,通过外部反应堆容器冷却实现堆芯熔渣的容器内滞留是一种重要的缓解策略。在IVR策略中,堆芯碎屑在反应堆压力容器(RPV)下水头(LH)中形成熔池,会对RPV产生极高的热载荷和机械载荷,可能导致RPV因塑性过度变形或蠕变而失效。因此,有必要对反应器容器LH在IVR工况下的热力学行为进行研究。本文在IVR-ERVC假设下,采用有限元法对RPV下水头进行了热分析和结构分析。通过计算得到了井壁的温度场、应力场以及井壁下封头的塑性变形和蠕变变形。并进行了塑性和蠕变破坏分析。结果表明:在假定条件下,200小时内封头不会因蠕变过大而失效。研究结果可为压力容器结构完整性分析提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal and Structural Analysis of Reactor Vessel Lower Head Considering Core Meltdown Accident
In the core meltdown severe accident, in-vessel retention (IVR) of molten core debris by external reactor vessel cooling (ERVC) is an important mitigation strategy. During the IVR strategy, the core debris forming a melt pool in the reactor pressure vessel (RPV) lower head (LH) will produce extremely high thermal and mechanical loadings to the RPV, which may cause the failure of RPV due to over-deformation of plasticity or creep. Therefore, it is necessary to study the thermomechanical behavior of the reactor vessel LH during IVR condition. In this paper, under the assumption of IVR-ERVC, the thermal and structural analysis for the RPV lower head is completed by finite element method. The temperature field and stress field of the RPV wall, and the plastic deformation and creep deformation of the lower head are obtained by calculation. Plasticity and creep failure analysis is conducted as well. Results show that under the assumed conditions, the head will not fail due to excessive creep deformation within 200 hours. The results can provide basis for structural integrity analysis of pressure vessels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信