捕食模型模型的稳定性分析其使用Holling - III响应功能隐藏因子的存在

Riris Nur Patria Putri
{"title":"捕食模型模型的稳定性分析其使用Holling - III响应功能隐藏因子的存在","authors":"Riris Nur Patria Putri","doi":"10.20473/conmatha.v3i2.30493","DOIUrl":null,"url":null,"abstract":"Predation is interaction between predator and prey, where predator preys prey. So predators can grow, develop, and reproduce. In order for prey to avoid predators, then prey needs a refuge. In this thesis, a predator-prey model with refuge factor using Holling type III response function which has three populations, i.e. prey population in the refuge, prey population outside the refuge, and predator population. From the model, three equilibrium points were obtained, those are extinction of the three populations which is unstable, while extinction of predator population and coexistence are asymptotic stable under certain conditions. The numerical simulation results show that refuge have an impact the survival of the prey.","PeriodicalId":119993,"journal":{"name":"Contemporary Mathematics and Applications (ConMathA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analisis Kestabilan Model Predator-Prey dengan Adanya Faktor Tempat Persembunyian Menggunakan Fungsi Respon Holling Tipe III\",\"authors\":\"Riris Nur Patria Putri\",\"doi\":\"10.20473/conmatha.v3i2.30493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predation is interaction between predator and prey, where predator preys prey. So predators can grow, develop, and reproduce. In order for prey to avoid predators, then prey needs a refuge. In this thesis, a predator-prey model with refuge factor using Holling type III response function which has three populations, i.e. prey population in the refuge, prey population outside the refuge, and predator population. From the model, three equilibrium points were obtained, those are extinction of the three populations which is unstable, while extinction of predator population and coexistence are asymptotic stable under certain conditions. The numerical simulation results show that refuge have an impact the survival of the prey.\",\"PeriodicalId\":119993,\"journal\":{\"name\":\"Contemporary Mathematics and Applications (ConMathA)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Mathematics and Applications (ConMathA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20473/conmatha.v3i2.30493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics and Applications (ConMathA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20473/conmatha.v3i2.30493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

捕食是捕食者和猎物之间的相互作用,捕食者捕食猎物。所以食肉动物可以生长、发育和繁殖。为了躲避捕食者,猎物需要一个避难所。本文采用Holling III型响应函数建立了一个具有避难因子的捕食者-食饵模型,该模型包含三个种群,即避难区内的猎物种群、避难区外的猎物种群和捕食者种群。从模型中得到三个平衡点,即三个种群的灭绝是不稳定的,而捕食者种群的灭绝和共存在一定条件下是渐近稳定的。数值模拟结果表明,避难所对猎物的生存有一定的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analisis Kestabilan Model Predator-Prey dengan Adanya Faktor Tempat Persembunyian Menggunakan Fungsi Respon Holling Tipe III
Predation is interaction between predator and prey, where predator preys prey. So predators can grow, develop, and reproduce. In order for prey to avoid predators, then prey needs a refuge. In this thesis, a predator-prey model with refuge factor using Holling type III response function which has three populations, i.e. prey population in the refuge, prey population outside the refuge, and predator population. From the model, three equilibrium points were obtained, those are extinction of the three populations which is unstable, while extinction of predator population and coexistence are asymptotic stable under certain conditions. The numerical simulation results show that refuge have an impact the survival of the prey.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信