{"title":"使用AdaBoost的航空激光雷达数据分类","authors":"S. Lodha, D. Fitzpatrick, D. Helmbold","doi":"10.1109/3DIM.2007.10","DOIUrl":null,"url":null,"abstract":"We use the AdaBoost algorithm to classify 3D aerial lidar scattered height data into four categories: road, grass, buildings, and trees. To do so we use five features: height, height variation, normal variation, lidar return intensity, and image intensity. We also use only lidar-derived features to organize the data into three classes (the road and grass classes are merged). We apply and test our results using ten regions taken from lidar data collected over an area of approximately eight square miles, obtaining higher than 92% accuracy. We also apply our classifier to our entire dataset, and present visual classification results both with and without uncertainty. We implement and experiment with several variations within the AdaBoost family of algorithms. We observe that our results are robust and stable over all the various tests and algorithmic variations. We also investigate features and values that are most critical in distinguishing between the classes. This insight is important in extending the results from one geographic region to another.","PeriodicalId":442311,"journal":{"name":"Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"117","resultStr":"{\"title\":\"Aerial Lidar Data Classification using AdaBoost\",\"authors\":\"S. Lodha, D. Fitzpatrick, D. Helmbold\",\"doi\":\"10.1109/3DIM.2007.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use the AdaBoost algorithm to classify 3D aerial lidar scattered height data into four categories: road, grass, buildings, and trees. To do so we use five features: height, height variation, normal variation, lidar return intensity, and image intensity. We also use only lidar-derived features to organize the data into three classes (the road and grass classes are merged). We apply and test our results using ten regions taken from lidar data collected over an area of approximately eight square miles, obtaining higher than 92% accuracy. We also apply our classifier to our entire dataset, and present visual classification results both with and without uncertainty. We implement and experiment with several variations within the AdaBoost family of algorithms. We observe that our results are robust and stable over all the various tests and algorithmic variations. We also investigate features and values that are most critical in distinguishing between the classes. This insight is important in extending the results from one geographic region to another.\",\"PeriodicalId\":442311,\"journal\":{\"name\":\"Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"117\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DIM.2007.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIM.2007.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We use the AdaBoost algorithm to classify 3D aerial lidar scattered height data into four categories: road, grass, buildings, and trees. To do so we use five features: height, height variation, normal variation, lidar return intensity, and image intensity. We also use only lidar-derived features to organize the data into three classes (the road and grass classes are merged). We apply and test our results using ten regions taken from lidar data collected over an area of approximately eight square miles, obtaining higher than 92% accuracy. We also apply our classifier to our entire dataset, and present visual classification results both with and without uncertainty. We implement and experiment with several variations within the AdaBoost family of algorithms. We observe that our results are robust and stable over all the various tests and algorithmic variations. We also investigate features and values that are most critical in distinguishing between the classes. This insight is important in extending the results from one geographic region to another.