{"title":"基于集成模型和协同仿真的模型驱动机器人软件设计","authors":"J. Broenink, Yunyun Ni","doi":"10.1109/SAMOS.2012.6404197","DOIUrl":null,"url":null,"abstract":"The work presented here is on a methodology for design of hard real-time embedded control software for robots, i.e. mechatronic products. The behavior of the total robot system (machine, control, software and I/O) is relevant, because the dynamics of the machine influences the robot software. Therefore, we use two appropriate Models of Computation, which represent continuous-time equations for the machine / robot part, and discrete event / discrete time equations for the control software part.","PeriodicalId":130275,"journal":{"name":"2012 International Conference on Embedded Computer Systems (SAMOS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Model-driven robot-software design using integrated models and co-simulation\",\"authors\":\"J. Broenink, Yunyun Ni\",\"doi\":\"10.1109/SAMOS.2012.6404197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work presented here is on a methodology for design of hard real-time embedded control software for robots, i.e. mechatronic products. The behavior of the total robot system (machine, control, software and I/O) is relevant, because the dynamics of the machine influences the robot software. Therefore, we use two appropriate Models of Computation, which represent continuous-time equations for the machine / robot part, and discrete event / discrete time equations for the control software part.\",\"PeriodicalId\":130275,\"journal\":{\"name\":\"2012 International Conference on Embedded Computer Systems (SAMOS)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Embedded Computer Systems (SAMOS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMOS.2012.6404197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Embedded Computer Systems (SAMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMOS.2012.6404197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model-driven robot-software design using integrated models and co-simulation
The work presented here is on a methodology for design of hard real-time embedded control software for robots, i.e. mechatronic products. The behavior of the total robot system (machine, control, software and I/O) is relevant, because the dynamics of the machine influences the robot software. Therefore, we use two appropriate Models of Computation, which represent continuous-time equations for the machine / robot part, and discrete event / discrete time equations for the control software part.