{"title":"具有故障和不同修复策略的异构双服务器队列","authors":"Kalyanaraman R","doi":"10.26782/jmcms.2022.05.00004","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a system with two heterogeneous servers Markovian queue. In which the system breakdown occurs when the system is in busy mode. Immediately the system undergoes repair. After completion of the repair, the system either undergoes optional repair mode or becomes busy mode based on a Bernoulli schedule. It is assumed that the number of repairs follows the Poisson process and the repair periods follow an exponential distribution. The model has been solved in steady-state using the matrix analytic method. Some performance measures and numerical results are obtained.","PeriodicalId":254600,"journal":{"name":"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HETEROGENEOUS TWO SERVER QUEUE WITH BREAKDOWN AND WITH VARIANT REPAIR POLICY\",\"authors\":\"Kalyanaraman R\",\"doi\":\"10.26782/jmcms.2022.05.00004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a system with two heterogeneous servers Markovian queue. In which the system breakdown occurs when the system is in busy mode. Immediately the system undergoes repair. After completion of the repair, the system either undergoes optional repair mode or becomes busy mode based on a Bernoulli schedule. It is assumed that the number of repairs follows the Poisson process and the repair periods follow an exponential distribution. The model has been solved in steady-state using the matrix analytic method. Some performance measures and numerical results are obtained.\",\"PeriodicalId\":254600,\"journal\":{\"name\":\"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26782/jmcms.2022.05.00004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26782/jmcms.2022.05.00004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
HETEROGENEOUS TWO SERVER QUEUE WITH BREAKDOWN AND WITH VARIANT REPAIR POLICY
In this paper, we consider a system with two heterogeneous servers Markovian queue. In which the system breakdown occurs when the system is in busy mode. Immediately the system undergoes repair. After completion of the repair, the system either undergoes optional repair mode or becomes busy mode based on a Bernoulli schedule. It is assumed that the number of repairs follows the Poisson process and the repair periods follow an exponential distribution. The model has been solved in steady-state using the matrix analytic method. Some performance measures and numerical results are obtained.