电力负荷集群:意大利案例

Luca Semeraro, E. Crisostomi, A. Franco, A. Landi, Marco Raugi, M. Tucci, G. Giunta
{"title":"电力负荷集群:意大利案例","authors":"Luca Semeraro, E. Crisostomi, A. Franco, A. Landi, Marco Raugi, M. Tucci, G. Giunta","doi":"10.1109/ISGTEUROPE.2014.7028919","DOIUrl":null,"url":null,"abstract":"In this paper we use clustering algorithms to compute the typical Italian load profile in different days of the week in different seasons. This result can be exploited by energy providers to tailor more attractive time-varying tariffs for their customers. We find out that better results are obtained if the clustering is not performed directly on the data, but on some features extracted from the data. Thus, we compare some conventional features to identify the most informative ones in the Italian case.","PeriodicalId":299515,"journal":{"name":"IEEE PES Innovative Smart Grid Technologies, Europe","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Electrical load clustering: The Italian case\",\"authors\":\"Luca Semeraro, E. Crisostomi, A. Franco, A. Landi, Marco Raugi, M. Tucci, G. Giunta\",\"doi\":\"10.1109/ISGTEUROPE.2014.7028919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we use clustering algorithms to compute the typical Italian load profile in different days of the week in different seasons. This result can be exploited by energy providers to tailor more attractive time-varying tariffs for their customers. We find out that better results are obtained if the clustering is not performed directly on the data, but on some features extracted from the data. Thus, we compare some conventional features to identify the most informative ones in the Italian case.\",\"PeriodicalId\":299515,\"journal\":{\"name\":\"IEEE PES Innovative Smart Grid Technologies, Europe\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE PES Innovative Smart Grid Technologies, Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTEUROPE.2014.7028919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE PES Innovative Smart Grid Technologies, Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEUROPE.2014.7028919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

在本文中,我们使用聚类算法来计算典型的意大利在不同季节一周中不同天数的负荷曲线。能源供应商可以利用这一结果为其客户量身定制更具吸引力的时变电价。我们发现,如果不直接对数据进行聚类,而是对从数据中提取的一些特征进行聚类,可以获得更好的聚类结果。因此,我们比较了一些传统特征,以确定意大利案例中最具信息量的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrical load clustering: The Italian case
In this paper we use clustering algorithms to compute the typical Italian load profile in different days of the week in different seasons. This result can be exploited by energy providers to tailor more attractive time-varying tariffs for their customers. We find out that better results are obtained if the clustering is not performed directly on the data, but on some features extracted from the data. Thus, we compare some conventional features to identify the most informative ones in the Italian case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信