一种改进的不平衡学习随机森林分类器

Weiping Lin, Jie Gao, Beizhan Wang, Qingqi Hong
{"title":"一种改进的不平衡学习随机森林分类器","authors":"Weiping Lin, Jie Gao, Beizhan Wang, Qingqi Hong","doi":"10.1109/ICAICA52286.2021.9497933","DOIUrl":null,"url":null,"abstract":"There are many application scenarios involving imbalanced datasets, whereas many traditional machine learning methods have limited ability to adapt to this kind of data. These methods usually have a bias to identify the majority classes while the minority classes are more important in many cases. In this study, we propose a variant of the completely random forest called HCRF. To improve the classification performance of imbalanced data, we introduced 2 mechanisms: random hybrid-resampling and a cost function that focuses on the minority classes. Verified on several imbalanced datasets, HCRF outperforms all comparison methods, demonstrating excellent performance on imbalanced learning.","PeriodicalId":121979,"journal":{"name":"2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Improved Random Forest Classifier for Imbalanced Learning\",\"authors\":\"Weiping Lin, Jie Gao, Beizhan Wang, Qingqi Hong\",\"doi\":\"10.1109/ICAICA52286.2021.9497933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are many application scenarios involving imbalanced datasets, whereas many traditional machine learning methods have limited ability to adapt to this kind of data. These methods usually have a bias to identify the majority classes while the minority classes are more important in many cases. In this study, we propose a variant of the completely random forest called HCRF. To improve the classification performance of imbalanced data, we introduced 2 mechanisms: random hybrid-resampling and a cost function that focuses on the minority classes. Verified on several imbalanced datasets, HCRF outperforms all comparison methods, demonstrating excellent performance on imbalanced learning.\",\"PeriodicalId\":121979,\"journal\":{\"name\":\"2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAICA52286.2021.9497933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICA52286.2021.9497933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

有许多应用场景涉及不平衡数据集,而许多传统的机器学习方法对这类数据的适应能力有限。这些方法通常倾向于识别多数类,而在许多情况下,少数类更为重要。在这项研究中,我们提出了一种完全随机森林的变体,称为HCRF。为了提高不平衡数据的分类性能,我们引入了两种机制:随机混合重采样和关注少数类的成本函数。在多个不平衡数据集上验证,HCRF优于所有比较方法,在不平衡学习上表现出优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Random Forest Classifier for Imbalanced Learning
There are many application scenarios involving imbalanced datasets, whereas many traditional machine learning methods have limited ability to adapt to this kind of data. These methods usually have a bias to identify the majority classes while the minority classes are more important in many cases. In this study, we propose a variant of the completely random forest called HCRF. To improve the classification performance of imbalanced data, we introduced 2 mechanisms: random hybrid-resampling and a cost function that focuses on the minority classes. Verified on several imbalanced datasets, HCRF outperforms all comparison methods, demonstrating excellent performance on imbalanced learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信