PriRecT: GPU共享的隐私保护作业推荐工具

Aritra Ray, Zhaobo Zhang, Ying Xiong, K. Chakrabarty
{"title":"PriRecT: GPU共享的隐私保护作业推荐工具","authors":"Aritra Ray, Zhaobo Zhang, Ying Xiong, K. Chakrabarty","doi":"10.1109/CloudSummit54781.2022.00021","DOIUrl":null,"url":null,"abstract":"Machine Learning (ML) jobs significantly benefit when trained on abundant GPU resources. It leads to resource contention when several ML training jobs are scheduled con-currently on a single GPU in the compute cluster. A job's performance is susceptible to its competitor's task on a single GPU. We, in this paper, propose PriRecT, a novel ML job recommendation tool that preserves user privacy for scheduling ML training jobs in the GPU compute cluster. We perform workload characterization for several ML training scripts, and the Futurewei mini-ML Workload Dataset is released publicly [1]. We build a knowledge base of inter and intra-cluster task interference for GPU sharing through a clustering-based approach. For scheduling purposes, PriRecT blinds the user-sensitive information and assigns the job to an existing cluster. Based on clustering results, PriRecT recommends jobs that should run concurrently on a single GPU to minimize task interference and additionally assigns an uncertainty score to account for job variations in the recommendation.","PeriodicalId":106553,"journal":{"name":"2022 IEEE Cloud Summit","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PriRecT: Privacy-preserving Job Recommendation Tool for GPU Sharing\",\"authors\":\"Aritra Ray, Zhaobo Zhang, Ying Xiong, K. Chakrabarty\",\"doi\":\"10.1109/CloudSummit54781.2022.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine Learning (ML) jobs significantly benefit when trained on abundant GPU resources. It leads to resource contention when several ML training jobs are scheduled con-currently on a single GPU in the compute cluster. A job's performance is susceptible to its competitor's task on a single GPU. We, in this paper, propose PriRecT, a novel ML job recommendation tool that preserves user privacy for scheduling ML training jobs in the GPU compute cluster. We perform workload characterization for several ML training scripts, and the Futurewei mini-ML Workload Dataset is released publicly [1]. We build a knowledge base of inter and intra-cluster task interference for GPU sharing through a clustering-based approach. For scheduling purposes, PriRecT blinds the user-sensitive information and assigns the job to an existing cluster. Based on clustering results, PriRecT recommends jobs that should run concurrently on a single GPU to minimize task interference and additionally assigns an uncertainty score to account for job variations in the recommendation.\",\"PeriodicalId\":106553,\"journal\":{\"name\":\"2022 IEEE Cloud Summit\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Cloud Summit\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CloudSummit54781.2022.00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Cloud Summit","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudSummit54781.2022.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在丰富的GPU资源上进行训练,机器学习(ML)作业将显著受益。当多个机器学习训练任务同时在计算集群中的单个GPU上调度时,会导致资源争用。一个任务的性能很容易受到竞争对手在单个GPU上的任务的影响。在本文中,我们提出了一种新颖的机器学习作业推荐工具PriRecT,它可以保护用户隐私,以便在GPU计算集群中调度机器学习训练作业。我们对几个机器学习训练脚本进行了工作量表征,并公开发布了Futurewei mini-ML工作量数据集[1]。我们通过基于聚类的方法建立了GPU共享的集群间和集群内任务干扰知识库。出于调度目的,PriRecT会屏蔽用户敏感信息,并将作业分配给现有集群。基于聚类结果,PriRecT推荐应该在单个GPU上并发运行的作业,以最大限度地减少任务干扰,并额外分配不确定性分数,以考虑推荐中的作业变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PriRecT: Privacy-preserving Job Recommendation Tool for GPU Sharing
Machine Learning (ML) jobs significantly benefit when trained on abundant GPU resources. It leads to resource contention when several ML training jobs are scheduled con-currently on a single GPU in the compute cluster. A job's performance is susceptible to its competitor's task on a single GPU. We, in this paper, propose PriRecT, a novel ML job recommendation tool that preserves user privacy for scheduling ML training jobs in the GPU compute cluster. We perform workload characterization for several ML training scripts, and the Futurewei mini-ML Workload Dataset is released publicly [1]. We build a knowledge base of inter and intra-cluster task interference for GPU sharing through a clustering-based approach. For scheduling purposes, PriRecT blinds the user-sensitive information and assigns the job to an existing cluster. Based on clustering results, PriRecT recommends jobs that should run concurrently on a single GPU to minimize task interference and additionally assigns an uncertainty score to account for job variations in the recommendation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信