公平元学习的少射分类

Chengli Zhao, Changbin Li, Jincheng Li, Feng Chen
{"title":"公平元学习的少射分类","authors":"Chengli Zhao, Changbin Li, Jincheng Li, Feng Chen","doi":"10.1109/ICBK50248.2020.00047","DOIUrl":null,"url":null,"abstract":"Artificial intelligence nowadays plays an increasingly prominent role in our life since decisions that were once made by humans are now delegated to automated systems. A machine learning algorithm trained based on biased data, however, tends to make unfair predictions. Developing classification algorithms that are fair with respect to protected attributes of the data thus becomes an important problem. Motivated by concerns surrounding the fairness effects of sharing and few-shot machine learning tools, such as the Model Agnostic Meta-Learning [1] framework, we propose a novel fair fast-adapted few-shot meta-learning approach that efficiently mitigates biases during meta-train by ensuring controlling the decision boundary covariance that between the protected variable and the signed distance from the feature vectors to the decision boundary. Through extensive experiments on two real-world image benchmarks over three state-of-the-art meta-learning algorithms, we empirically demonstrate that our proposed approach efficiently mitigates biases on model output and generalizes both accuracy and fairness to unseen tasks with a limited amount of training samples.","PeriodicalId":432857,"journal":{"name":"2020 IEEE International Conference on Knowledge Graph (ICKG)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Fair Meta-Learning For Few-Shot Classification\",\"authors\":\"Chengli Zhao, Changbin Li, Jincheng Li, Feng Chen\",\"doi\":\"10.1109/ICBK50248.2020.00047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence nowadays plays an increasingly prominent role in our life since decisions that were once made by humans are now delegated to automated systems. A machine learning algorithm trained based on biased data, however, tends to make unfair predictions. Developing classification algorithms that are fair with respect to protected attributes of the data thus becomes an important problem. Motivated by concerns surrounding the fairness effects of sharing and few-shot machine learning tools, such as the Model Agnostic Meta-Learning [1] framework, we propose a novel fair fast-adapted few-shot meta-learning approach that efficiently mitigates biases during meta-train by ensuring controlling the decision boundary covariance that between the protected variable and the signed distance from the feature vectors to the decision boundary. Through extensive experiments on two real-world image benchmarks over three state-of-the-art meta-learning algorithms, we empirically demonstrate that our proposed approach efficiently mitigates biases on model output and generalizes both accuracy and fairness to unseen tasks with a limited amount of training samples.\",\"PeriodicalId\":432857,\"journal\":{\"name\":\"2020 IEEE International Conference on Knowledge Graph (ICKG)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Knowledge Graph (ICKG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBK50248.2020.00047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Knowledge Graph (ICKG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK50248.2020.00047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

如今,人工智能在我们的生活中扮演着越来越重要的角色,因为曾经由人类做出的决定现在被委托给自动化系统。然而,基于有偏见的数据训练的机器学习算法往往会做出不公平的预测。因此,开发对数据的受保护属性公平的分类算法成为一个重要问题。基于对共享和少量机器学习工具(如模型不可知元学习[1]框架)的公平性影响的关注,我们提出了一种新的公平快速适应的少量元学习方法,该方法通过确保控制受保护变量与特征向量到决策边界的签名距离之间的协方差,有效地减轻了元训练过程中的偏差。通过在三个最先进的元学习算法上对两个真实世界的图像基准进行广泛的实验,我们经验地证明了我们提出的方法有效地减轻了模型输出的偏差,并将准确性和公平性推广到具有有限数量训练样本的未见任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fair Meta-Learning For Few-Shot Classification
Artificial intelligence nowadays plays an increasingly prominent role in our life since decisions that were once made by humans are now delegated to automated systems. A machine learning algorithm trained based on biased data, however, tends to make unfair predictions. Developing classification algorithms that are fair with respect to protected attributes of the data thus becomes an important problem. Motivated by concerns surrounding the fairness effects of sharing and few-shot machine learning tools, such as the Model Agnostic Meta-Learning [1] framework, we propose a novel fair fast-adapted few-shot meta-learning approach that efficiently mitigates biases during meta-train by ensuring controlling the decision boundary covariance that between the protected variable and the signed distance from the feature vectors to the decision boundary. Through extensive experiments on two real-world image benchmarks over three state-of-the-art meta-learning algorithms, we empirically demonstrate that our proposed approach efficiently mitigates biases on model output and generalizes both accuracy and fairness to unseen tasks with a limited amount of training samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信