基于逼近能力最大化的最优深度神经网络

Hector F. Calvo-Pardo, Tullio Mancini, Jose Olmo
{"title":"基于逼近能力最大化的最优深度神经网络","authors":"Hector F. Calvo-Pardo, Tullio Mancini, Jose Olmo","doi":"10.2139/ssrn.3578850","DOIUrl":null,"url":null,"abstract":"We propose an optimal architecture for deep neural networks of given size. The optimal architecture obtains from maximizing the minimum number of linear regions approximated by a deep neural network with a ReLu activation function. The accuracy of the approximation function relies on the neural network structure, characterized by the number, dependence and hierarchy between the nodes within and across layers. For a given number of nodes, we show how the accuracy of the approximation improves as we optimally choose the width and depth of the network. More complex datasets naturally summon bigger-sized architectures that perform better applying our optimization procedure. A Monte-Carlo simulation exercise illustrates the outperformance of the optimised architecture against cross-validation methods and gridsearch for linear and nonlinear prediction models. The application of this methodology to the Boston Housing dataset confirms empirically the outperformance of our method against state-of the-art machine learning models.","PeriodicalId":114865,"journal":{"name":"ERN: Neural Networks & Related Topics (Topic)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Optimal Deep Neural Networks by Maximization of the Approximation Power\",\"authors\":\"Hector F. Calvo-Pardo, Tullio Mancini, Jose Olmo\",\"doi\":\"10.2139/ssrn.3578850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an optimal architecture for deep neural networks of given size. The optimal architecture obtains from maximizing the minimum number of linear regions approximated by a deep neural network with a ReLu activation function. The accuracy of the approximation function relies on the neural network structure, characterized by the number, dependence and hierarchy between the nodes within and across layers. For a given number of nodes, we show how the accuracy of the approximation improves as we optimally choose the width and depth of the network. More complex datasets naturally summon bigger-sized architectures that perform better applying our optimization procedure. A Monte-Carlo simulation exercise illustrates the outperformance of the optimised architecture against cross-validation methods and gridsearch for linear and nonlinear prediction models. The application of this methodology to the Boston Housing dataset confirms empirically the outperformance of our method against state-of the-art machine learning models.\",\"PeriodicalId\":114865,\"journal\":{\"name\":\"ERN: Neural Networks & Related Topics (Topic)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Neural Networks & Related Topics (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3578850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Neural Networks & Related Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3578850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们提出了一个给定大小的深度神经网络的最优架构。利用ReLu激活函数,将深度神经网络近似的线性区域的最小数量最大化,从而得到最优结构。逼近函数的准确性依赖于神经网络结构,神经网络结构以层内和层间节点的数量、依赖和层次为特征。对于给定数量的节点,我们展示了当我们最佳地选择网络的宽度和深度时,近似的准确性是如何提高的。更复杂的数据集自然会召唤更大的架构,应用我们的优化过程可以更好地执行。蒙特卡罗模拟练习说明了优化架构对交叉验证方法和线性和非线性预测模型的网格搜索的卓越性能。将这种方法应用于波士顿住房数据集,从经验上证实了我们的方法优于最先进的机器学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Deep Neural Networks by Maximization of the Approximation Power
We propose an optimal architecture for deep neural networks of given size. The optimal architecture obtains from maximizing the minimum number of linear regions approximated by a deep neural network with a ReLu activation function. The accuracy of the approximation function relies on the neural network structure, characterized by the number, dependence and hierarchy between the nodes within and across layers. For a given number of nodes, we show how the accuracy of the approximation improves as we optimally choose the width and depth of the network. More complex datasets naturally summon bigger-sized architectures that perform better applying our optimization procedure. A Monte-Carlo simulation exercise illustrates the outperformance of the optimised architecture against cross-validation methods and gridsearch for linear and nonlinear prediction models. The application of this methodology to the Boston Housing dataset confirms empirically the outperformance of our method against state-of the-art machine learning models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信