具有动态信道的独立非高斯信号的直接盲分离

Ruey-Wen Liu, Hui Luo
{"title":"具有动态信道的独立非高斯信号的直接盲分离","authors":"Ruey-Wen Liu, Hui Luo","doi":"10.1109/CNNA.1998.685325","DOIUrl":null,"url":null,"abstract":"A fundamental theorem of direct blind separation of independent non-Gaussian signals with dynamic channels is presented. Roughly, it states that blind signal separation is achieved if and only if the output signals are temporally uncorrelated and pairwise independent. This condition is simple enough to be adaptable by a neural network.","PeriodicalId":171485,"journal":{"name":"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Direct blind separation of independent non-Gaussian signals with dynamic channels\",\"authors\":\"Ruey-Wen Liu, Hui Luo\",\"doi\":\"10.1109/CNNA.1998.685325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fundamental theorem of direct blind separation of independent non-Gaussian signals with dynamic channels is presented. Roughly, it states that blind signal separation is achieved if and only if the output signals are temporally uncorrelated and pairwise independent. This condition is simple enough to be adaptable by a neural network.\",\"PeriodicalId\":171485,\"journal\":{\"name\":\"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.1998.685325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1998.685325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

给出了具有动态信道的独立非高斯信号直接盲分离的一个基本定理。粗略地说,当且仅当输出信号暂时不相关且两两独立时,盲信号分离才能实现。这种情况很简单,神经网络可以适应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct blind separation of independent non-Gaussian signals with dynamic channels
A fundamental theorem of direct blind separation of independent non-Gaussian signals with dynamic channels is presented. Roughly, it states that blind signal separation is achieved if and only if the output signals are temporally uncorrelated and pairwise independent. This condition is simple enough to be adaptable by a neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信