彩虹学习器:基于结构颜色的AR标记的照明环境估计

Yuji Tsukagoshi, Yuuki Uranishi, J. Orlosky, Kiyomi Ito, H. Takemura
{"title":"彩虹学习器:基于结构颜色的AR标记的照明环境估计","authors":"Yuji Tsukagoshi, Yuuki Uranishi, J. Orlosky, Kiyomi Ito, H. Takemura","doi":"10.1109/AIVR50618.2020.00074","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for estimating lighting environments from an AR marker coupled with the structural color patterns inherent to a compact disc (CD) form-factor. To achieve photometric consistency, these patterns are used as input to a Conditional Generative Adversarial Network (CGAN), which allows us to efficiently and quickly generate estimations of an environment map. We construct a dataset from pairs of images of the structural color pattern and environment map captured in multiple scenes, and the CGAN is then trained with this dataset. Experiments show that we can generate visually accurate reconstructions with this method for certain scenes, and that the environment map can be estimated in real time.","PeriodicalId":348199,"journal":{"name":"2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rainbow Learner: Lighting Environment Estimation from a Structural-color based AR Marker\",\"authors\":\"Yuji Tsukagoshi, Yuuki Uranishi, J. Orlosky, Kiyomi Ito, H. Takemura\",\"doi\":\"10.1109/AIVR50618.2020.00074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method for estimating lighting environments from an AR marker coupled with the structural color patterns inherent to a compact disc (CD) form-factor. To achieve photometric consistency, these patterns are used as input to a Conditional Generative Adversarial Network (CGAN), which allows us to efficiently and quickly generate estimations of an environment map. We construct a dataset from pairs of images of the structural color pattern and environment map captured in multiple scenes, and the CGAN is then trained with this dataset. Experiments show that we can generate visually accurate reconstructions with this method for certain scenes, and that the environment map can be estimated in real time.\",\"PeriodicalId\":348199,\"journal\":{\"name\":\"2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIVR50618.2020.00074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIVR50618.2020.00074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种从AR标记加上CD形状因素固有的结构颜色模式来估计照明环境的方法。为了实现光度一致性,这些模式被用作条件生成对抗网络(CGAN)的输入,这使我们能够高效快速地生成环境地图的估计。我们从多个场景中捕获的结构颜色图案和环境地图的图像对构建一个数据集,然后使用该数据集训练CGAN。实验表明,该方法可以对特定场景生成视觉上准确的重建图,并且可以实时估计环境地图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rainbow Learner: Lighting Environment Estimation from a Structural-color based AR Marker
This paper proposes a method for estimating lighting environments from an AR marker coupled with the structural color patterns inherent to a compact disc (CD) form-factor. To achieve photometric consistency, these patterns are used as input to a Conditional Generative Adversarial Network (CGAN), which allows us to efficiently and quickly generate estimations of an environment map. We construct a dataset from pairs of images of the structural color pattern and environment map captured in multiple scenes, and the CGAN is then trained with this dataset. Experiments show that we can generate visually accurate reconstructions with this method for certain scenes, and that the environment map can be estimated in real time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信