高斯混合过程中EM算法的平方根更新加速

I. Shioya, T. Miura
{"title":"高斯混合过程中EM算法的平方根更新加速","authors":"I. Shioya, T. Miura","doi":"10.1109/PACRIM.2011.6032887","DOIUrl":null,"url":null,"abstract":"This paper presents a new expectation maximization (EM) algorithm, which employees Square-root Update method combined by conventional Gaussian mixture EM algorithm, to accelerate the parameter learning of Gaussian mixture models. The algorithm enables us to improve poor convergence, avoids us unstable implementation and removes unnecessary iterations by employing inexact searches during the maximization processes. The convergence is faster compared to conventional EM algorithm. Furthermore, our proposal algorithm can be applied to autoregressive Gaussian mixture stationary processes.","PeriodicalId":236844,"journal":{"name":"Proceedings of 2011 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Square root update acceleration of the EM algorithm in Gaussian mixture processes\",\"authors\":\"I. Shioya, T. Miura\",\"doi\":\"10.1109/PACRIM.2011.6032887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new expectation maximization (EM) algorithm, which employees Square-root Update method combined by conventional Gaussian mixture EM algorithm, to accelerate the parameter learning of Gaussian mixture models. The algorithm enables us to improve poor convergence, avoids us unstable implementation and removes unnecessary iterations by employing inexact searches during the maximization processes. The convergence is faster compared to conventional EM algorithm. Furthermore, our proposal algorithm can be applied to autoregressive Gaussian mixture stationary processes.\",\"PeriodicalId\":236844,\"journal\":{\"name\":\"Proceedings of 2011 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2011 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACRIM.2011.6032887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2011 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.2011.6032887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的期望最大化算法,该算法将平方根更新方法与传统的高斯混合期望最大化算法相结合,以加速高斯混合模型的参数学习。该算法使我们能够改善较差的收敛性,避免不稳定的实现,并通过在最大化过程中使用不精确的搜索来消除不必要的迭代。与传统的电磁算法相比,收敛速度更快。此外,该算法可应用于自回归高斯混合平稳过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Square root update acceleration of the EM algorithm in Gaussian mixture processes
This paper presents a new expectation maximization (EM) algorithm, which employees Square-root Update method combined by conventional Gaussian mixture EM algorithm, to accelerate the parameter learning of Gaussian mixture models. The algorithm enables us to improve poor convergence, avoids us unstable implementation and removes unnecessary iterations by employing inexact searches during the maximization processes. The convergence is faster compared to conventional EM algorithm. Furthermore, our proposal algorithm can be applied to autoregressive Gaussian mixture stationary processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信