基于粒子群优化的多堆燃料电池系统功率分配与氢耗最小化

Noureddine Bouisalmane, Tianhong Wang, E. Breaz, S. Doubabi, D. Paire, Jorn Oubraham, Michael Levy, Fei Gao
{"title":"基于粒子群优化的多堆燃料电池系统功率分配与氢耗最小化","authors":"Noureddine Bouisalmane, Tianhong Wang, E. Breaz, S. Doubabi, D. Paire, Jorn Oubraham, Michael Levy, Fei Gao","doi":"10.1109/ITEC51675.2021.9490111","DOIUrl":null,"url":null,"abstract":"Concerning the fuel cell electric vehicles, the multi-stack fuel cell system (MFCS) offers superior performance and reliability over single stack fuel cell system. In order to obtain the lowest hydrogen consumption, this paper proposes a power allocation strategy using the Particle Swarm Optimization (PSO) algorithm. The MFCS is composed of two 300 W fuel cell stacks and a 360 Wh battery. The simulation results have shown that the performance of the proposed strategy can achieve more satisfactory results in terms of minimizing hydrogen consumption and managing the battery state of charge, compared to the equidistributional method.","PeriodicalId":339989,"journal":{"name":"2021 IEEE Transportation Electrification Conference & Expo (ITEC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hydrogen consumption minimization with optimal power allocation of multi-stack fuel cell system using particle swarm optimization\",\"authors\":\"Noureddine Bouisalmane, Tianhong Wang, E. Breaz, S. Doubabi, D. Paire, Jorn Oubraham, Michael Levy, Fei Gao\",\"doi\":\"10.1109/ITEC51675.2021.9490111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concerning the fuel cell electric vehicles, the multi-stack fuel cell system (MFCS) offers superior performance and reliability over single stack fuel cell system. In order to obtain the lowest hydrogen consumption, this paper proposes a power allocation strategy using the Particle Swarm Optimization (PSO) algorithm. The MFCS is composed of two 300 W fuel cell stacks and a 360 Wh battery. The simulation results have shown that the performance of the proposed strategy can achieve more satisfactory results in terms of minimizing hydrogen consumption and managing the battery state of charge, compared to the equidistributional method.\",\"PeriodicalId\":339989,\"journal\":{\"name\":\"2021 IEEE Transportation Electrification Conference & Expo (ITEC)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Transportation Electrification Conference & Expo (ITEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITEC51675.2021.9490111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Transportation Electrification Conference & Expo (ITEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC51675.2021.9490111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在燃料电池电动汽车中,多堆燃料电池系统比单堆燃料电池系统具有更高的性能和可靠性。为了获得最低的氢消耗,本文提出了一种基于粒子群优化算法的功率分配策略。MFCS由两个300w的燃料电池组和一个360wh的电池组成。仿真结果表明,与等分配方法相比,该策略在最小化氢消耗和管理电池充电状态方面取得了更满意的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrogen consumption minimization with optimal power allocation of multi-stack fuel cell system using particle swarm optimization
Concerning the fuel cell electric vehicles, the multi-stack fuel cell system (MFCS) offers superior performance and reliability over single stack fuel cell system. In order to obtain the lowest hydrogen consumption, this paper proposes a power allocation strategy using the Particle Swarm Optimization (PSO) algorithm. The MFCS is composed of two 300 W fuel cell stacks and a 360 Wh battery. The simulation results have shown that the performance of the proposed strategy can achieve more satisfactory results in terms of minimizing hydrogen consumption and managing the battery state of charge, compared to the equidistributional method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信