固态波陀螺仪非线性数学模型参数辨识方法的发展

A. Maslov, D. A. Maslov, I. Merkuryev, V. V. Podalkov
{"title":"固态波陀螺仪非线性数学模型参数辨识方法的发展","authors":"A. Maslov, D. A. Maslov, I. Merkuryev, V. V. Podalkov","doi":"10.23919/icins43215.2020.9133967","DOIUrl":null,"url":null,"abstract":"Identification of parameters of a solid-state wave gyroscope in the forced and free-run modes under nonlinear resonator oscillation is considered. By using the Krylov-Bogolyubov averaging method, calibration equations are deduced for determining the mathematical model coefficients. These coefficients contain an oscillation nonlinearity coefficient and parameters characterizing resonator defects including frequency difference and damping anisotropy, orientation of main axes of stiffness and dissipation. Suggested identification methods allow us to perform testing at large oscillation amplitudes. Numerical simulation of parameters identification is carried out. It is shown that accounting for nonlinearities in case of large oscillation amplitudes significantly increases the accuracy of parameters identification.","PeriodicalId":127936,"journal":{"name":"2020 27th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of Methods for Identification of Nonlinear Mathematical Model Parameters of Solid-State Wave Gyroscope\",\"authors\":\"A. Maslov, D. A. Maslov, I. Merkuryev, V. V. Podalkov\",\"doi\":\"10.23919/icins43215.2020.9133967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identification of parameters of a solid-state wave gyroscope in the forced and free-run modes under nonlinear resonator oscillation is considered. By using the Krylov-Bogolyubov averaging method, calibration equations are deduced for determining the mathematical model coefficients. These coefficients contain an oscillation nonlinearity coefficient and parameters characterizing resonator defects including frequency difference and damping anisotropy, orientation of main axes of stiffness and dissipation. Suggested identification methods allow us to perform testing at large oscillation amplitudes. Numerical simulation of parameters identification is carried out. It is shown that accounting for nonlinearities in case of large oscillation amplitudes significantly increases the accuracy of parameters identification.\",\"PeriodicalId\":127936,\"journal\":{\"name\":\"2020 27th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 27th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/icins43215.2020.9133967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 27th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/icins43215.2020.9133967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了非线性谐振腔振荡下固体波陀螺仪在强迫和自由运行模式下的参数辨识问题。采用Krylov-Bogolyubov平均法,推导了确定数学模型系数的标定方程。这些系数包含振荡非线性系数和表征谐振器缺陷的参数,包括频率差和阻尼各向异性、主轴刚度方向和耗散。建议的识别方法允许我们在大振荡幅度下进行测试。对参数辨识过程进行了数值模拟。结果表明,在振荡幅度较大的情况下,考虑非线性可以显著提高参数辨识的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of Methods for Identification of Nonlinear Mathematical Model Parameters of Solid-State Wave Gyroscope
Identification of parameters of a solid-state wave gyroscope in the forced and free-run modes under nonlinear resonator oscillation is considered. By using the Krylov-Bogolyubov averaging method, calibration equations are deduced for determining the mathematical model coefficients. These coefficients contain an oscillation nonlinearity coefficient and parameters characterizing resonator defects including frequency difference and damping anisotropy, orientation of main axes of stiffness and dissipation. Suggested identification methods allow us to perform testing at large oscillation amplitudes. Numerical simulation of parameters identification is carried out. It is shown that accounting for nonlinearities in case of large oscillation amplitudes significantly increases the accuracy of parameters identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信