利用混合GCN-BiLSTM模型预测太阳能发电量

Radityo Fajar Pamungkas, Ida Bagus Krishna Yoga Utama, Muhammad Miftah Faridh, Md Morshed Alam, ByungDeok Chung, Y. Jang
{"title":"利用混合GCN-BiLSTM模型预测太阳能发电量","authors":"Radityo Fajar Pamungkas, Ida Bagus Krishna Yoga Utama, Muhammad Miftah Faridh, Md Morshed Alam, ByungDeok Chung, Y. Jang","doi":"10.1109/ICAIIC57133.2023.10067088","DOIUrl":null,"url":null,"abstract":"Under increasing levels of renewable energy source (RES) penetration, unpredictability and uncertainty are emerging drivers of power imbalances. Forecasting is frequently used to anticipate renewable energy power generation. Forecast errors, on the other hand, significantly negatively impact power system performance. This research describes a deep learning technique based on spatiotemporal analysis for accurately forecasting solar power generation. Solar power generation output from seven PV sites is predicted using a hybrid graph convolutional network (GCN) module, bidirectional long short-term memory (BiLSTM) module, and attention layer. Our model effectively captures comprehensive spatiotemporal correlations on real-world solar power generation datasets and surpasses several existing methods.","PeriodicalId":105769,"journal":{"name":"2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting Solar Energy Production using a Hybrid GCN-BiLSTM Model\",\"authors\":\"Radityo Fajar Pamungkas, Ida Bagus Krishna Yoga Utama, Muhammad Miftah Faridh, Md Morshed Alam, ByungDeok Chung, Y. Jang\",\"doi\":\"10.1109/ICAIIC57133.2023.10067088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under increasing levels of renewable energy source (RES) penetration, unpredictability and uncertainty are emerging drivers of power imbalances. Forecasting is frequently used to anticipate renewable energy power generation. Forecast errors, on the other hand, significantly negatively impact power system performance. This research describes a deep learning technique based on spatiotemporal analysis for accurately forecasting solar power generation. Solar power generation output from seven PV sites is predicted using a hybrid graph convolutional network (GCN) module, bidirectional long short-term memory (BiLSTM) module, and attention layer. Our model effectively captures comprehensive spatiotemporal correlations on real-world solar power generation datasets and surpasses several existing methods.\",\"PeriodicalId\":105769,\"journal\":{\"name\":\"2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIIC57133.2023.10067088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC57133.2023.10067088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在可再生能源(RES)普及率不断提高的情况下,不可预测性和不确定性正在成为电力失衡的新驱动因素。预测经常用于预测可再生能源发电。另一方面,预测误差对电力系统性能有显著的负面影响。本研究描述了一种基于时空分析的深度学习技术,用于准确预测太阳能发电量。使用混合图卷积网络(GCN)模块、双向长短期记忆(BiLSTM)模块和注意层预测七个光伏站点的太阳能发电输出。我们的模型有效地捕获了真实太阳能发电数据集的全面时空相关性,并超越了几种现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting Solar Energy Production using a Hybrid GCN-BiLSTM Model
Under increasing levels of renewable energy source (RES) penetration, unpredictability and uncertainty are emerging drivers of power imbalances. Forecasting is frequently used to anticipate renewable energy power generation. Forecast errors, on the other hand, significantly negatively impact power system performance. This research describes a deep learning technique based on spatiotemporal analysis for accurately forecasting solar power generation. Solar power generation output from seven PV sites is predicted using a hybrid graph convolutional network (GCN) module, bidirectional long short-term memory (BiLSTM) module, and attention layer. Our model effectively captures comprehensive spatiotemporal correlations on real-world solar power generation datasets and surpasses several existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信