一种理解财务表语义的矩形挖掘方法

Xilun Chen, Laura Chiticariu, Marina Danilevsky, A. Evfimievski, P. Sen
{"title":"一种理解财务表语义的矩形挖掘方法","authors":"Xilun Chen, Laura Chiticariu, Marina Danilevsky, A. Evfimievski, P. Sen","doi":"10.1109/ICDAR.2017.52","DOIUrl":null,"url":null,"abstract":"Financial statements report crucial information in tables with complex semantic structure, which are desirable, yet challenging, to interpret automatically. For example, in such tables a row of data cells is often explained by the headers of other rows. In a departure from prior art, we propose a rectangle mining framework for understanding complex tables, which considers rectangular regions rather than individual cells or pairs of cells in a table. We instantiate this framework with ReMine, an algorithm for extracting row header semantics of table, and show that it significantly outperforms prior pair-wise classification approaches on two datasets: (i) a set of manually labeled financial tables from multiple companies, and (ii) the ICDAR 2013 Table Competition dataset.","PeriodicalId":433676,"journal":{"name":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Rectangle Mining Method for Understanding the Semantics of Financial Tables\",\"authors\":\"Xilun Chen, Laura Chiticariu, Marina Danilevsky, A. Evfimievski, P. Sen\",\"doi\":\"10.1109/ICDAR.2017.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Financial statements report crucial information in tables with complex semantic structure, which are desirable, yet challenging, to interpret automatically. For example, in such tables a row of data cells is often explained by the headers of other rows. In a departure from prior art, we propose a rectangle mining framework for understanding complex tables, which considers rectangular regions rather than individual cells or pairs of cells in a table. We instantiate this framework with ReMine, an algorithm for extracting row header semantics of table, and show that it significantly outperforms prior pair-wise classification approaches on two datasets: (i) a set of manually labeled financial tables from multiple companies, and (ii) the ICDAR 2013 Table Competition dataset.\",\"PeriodicalId\":433676,\"journal\":{\"name\":\"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2017.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2017.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

财务报表在具有复杂语义结构的表中报告关键信息,这些表的自动解释是可取的,但也是具有挑战性的。例如,在这样的表中,一行数据单元格通常由其他行的标题解释。与现有技术不同,我们提出了一个用于理解复杂表的矩形挖掘框架,它考虑的是矩形区域,而不是表中的单个单元格或单元格对。我们用ReMine(一种提取表的行头语义的算法)实例化了这个框架,并表明它在两个数据集上显著优于之前的成对分类方法:(i)一组来自多家公司的手动标记的财务表,以及(ii) ICDAR 2013表竞争数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Rectangle Mining Method for Understanding the Semantics of Financial Tables
Financial statements report crucial information in tables with complex semantic structure, which are desirable, yet challenging, to interpret automatically. For example, in such tables a row of data cells is often explained by the headers of other rows. In a departure from prior art, we propose a rectangle mining framework for understanding complex tables, which considers rectangular regions rather than individual cells or pairs of cells in a table. We instantiate this framework with ReMine, an algorithm for extracting row header semantics of table, and show that it significantly outperforms prior pair-wise classification approaches on two datasets: (i) a set of manually labeled financial tables from multiple companies, and (ii) the ICDAR 2013 Table Competition dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信