基于车联网数据的有效性度量估计

J. Argote, Eleni Christofa, Yiguang Xuan, A. Skabardonis
{"title":"基于车联网数据的有效性度量估计","authors":"J. Argote, Eleni Christofa, Yiguang Xuan, A. Skabardonis","doi":"10.1109/ITSC.2011.6083020","DOIUrl":null,"url":null,"abstract":"Vehicle-infrastructure cooperation via the Connected Vehicle initiative is a promising mobile data source for improving real-time traffic management applications such as adaptive signal control. This paper focuses on developing estimation methods with the use of Connected Vehicle data for several measures of effectiveness (e.g., queue length, average speed, number of stops), essential for determining traffic conditions on urban signalized arterials for real-time applications. This research systematically determines minimum penetration rates that allow accurate estimates for a wide range of measures of effectiveness in undersaturated traffic conditions. The estimation of these measures and minimum penetration requirements has been tested using Next Generation Simulation (NGSIM) data.","PeriodicalId":186596,"journal":{"name":"2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Estimation of measures of effectiveness based on Connected Vehicle data\",\"authors\":\"J. Argote, Eleni Christofa, Yiguang Xuan, A. Skabardonis\",\"doi\":\"10.1109/ITSC.2011.6083020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicle-infrastructure cooperation via the Connected Vehicle initiative is a promising mobile data source for improving real-time traffic management applications such as adaptive signal control. This paper focuses on developing estimation methods with the use of Connected Vehicle data for several measures of effectiveness (e.g., queue length, average speed, number of stops), essential for determining traffic conditions on urban signalized arterials for real-time applications. This research systematically determines minimum penetration rates that allow accurate estimates for a wide range of measures of effectiveness in undersaturated traffic conditions. The estimation of these measures and minimum penetration requirements has been tested using Next Generation Simulation (NGSIM) data.\",\"PeriodicalId\":186596,\"journal\":{\"name\":\"2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2011.6083020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2011.6083020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

通过互联汽车倡议开展的车辆-基础设施合作是一种很有前途的移动数据源,可用于改善实时交通管理应用,如自适应信号控制。本文的重点是开发使用联网车辆数据的几种有效性度量(例如,队列长度、平均速度、停靠次数)的估计方法,这对于确定实时应用中城市信号主干道的交通状况至关重要。这项研究系统地确定了最低渗透率,从而可以准确估计在不饱和交通条件下的各种有效性措施。这些措施和最低渗透要求的估计已经使用下一代模拟(NGSIM)数据进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of measures of effectiveness based on Connected Vehicle data
Vehicle-infrastructure cooperation via the Connected Vehicle initiative is a promising mobile data source for improving real-time traffic management applications such as adaptive signal control. This paper focuses on developing estimation methods with the use of Connected Vehicle data for several measures of effectiveness (e.g., queue length, average speed, number of stops), essential for determining traffic conditions on urban signalized arterials for real-time applications. This research systematically determines minimum penetration rates that allow accurate estimates for a wide range of measures of effectiveness in undersaturated traffic conditions. The estimation of these measures and minimum penetration requirements has been tested using Next Generation Simulation (NGSIM) data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信