基于优势点的大型人脸数据库快速筛选

Yongsheng Gao
{"title":"基于优势点的大型人脸数据库快速筛选","authors":"Yongsheng Gao","doi":"10.1109/MMMC.2005.38","DOIUrl":null,"url":null,"abstract":"Current face identification approaches require computer systems to search through large quantity of face feature sets in the database and pick the ones that best match the features of an unknown input face. In this paper, a fast screening method for large face database searching is proposed. The method utilizes dominant points instead of edge maps as features for similarity measurement. A new formulation of Hausdorff distance is designed for merit-based dominant point matching. The screening experiments demonstrated that the proposed face screening method significantly improves the computational speed and the storage economy. It provides a very efficient way for large face databases searching and screening.","PeriodicalId":121228,"journal":{"name":"11th International Multimedia Modelling Conference","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Screening in Large Face Databases Using Merit-Based Dominant Points\",\"authors\":\"Yongsheng Gao\",\"doi\":\"10.1109/MMMC.2005.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current face identification approaches require computer systems to search through large quantity of face feature sets in the database and pick the ones that best match the features of an unknown input face. In this paper, a fast screening method for large face database searching is proposed. The method utilizes dominant points instead of edge maps as features for similarity measurement. A new formulation of Hausdorff distance is designed for merit-based dominant point matching. The screening experiments demonstrated that the proposed face screening method significantly improves the computational speed and the storage economy. It provides a very efficient way for large face databases searching and screening.\",\"PeriodicalId\":121228,\"journal\":{\"name\":\"11th International Multimedia Modelling Conference\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"11th International Multimedia Modelling Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMMC.2005.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th International Multimedia Modelling Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMMC.2005.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当前的人脸识别方法要求计算机系统在数据库中搜索大量的人脸特征集,并选择最匹配未知输入人脸特征的特征集。提出了一种快速筛选大型人脸数据库的方法。该方法利用优势点代替边缘图作为特征进行相似性度量。设计了一种新的基于优势点匹配的豪斯多夫距离公式。筛选实验表明,所提出的人脸筛选方法显著提高了计算速度和存储经济性。它为大型人脸数据库的检索和筛选提供了一种非常有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Screening in Large Face Databases Using Merit-Based Dominant Points
Current face identification approaches require computer systems to search through large quantity of face feature sets in the database and pick the ones that best match the features of an unknown input face. In this paper, a fast screening method for large face database searching is proposed. The method utilizes dominant points instead of edge maps as features for similarity measurement. A new formulation of Hausdorff distance is designed for merit-based dominant point matching. The screening experiments demonstrated that the proposed face screening method significantly improves the computational speed and the storage economy. It provides a very efficient way for large face databases searching and screening.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信