{"title":"内禀租金参数和基于频谱的划分方法","authors":"L. Hagen, A. Kahng, F. Kurdahi, C. Ramachandran","doi":"10.1109/EURDAC.1992.246242","DOIUrl":null,"url":null,"abstract":"The complexity of circuit designs requires a top-down approach to layout synthesis. A good partitioning hierarchy, as measured by the associated Rent parameter, will correspond to an area-efficient layout. The intrinsic Rent parameter of a netlist is defined as the minimum possible Rent parameter of any partitioning hierarchy for the netlist. Experimental results show that spectra-based ratio cut partitioning methods yield partitioning hierarchies with the lowest observed Rent parameter over all benchmarks and over all algorithms tested. For examples where the intrinsic Rent parameter is known, spectral ratio cut partitioning yields a Rent parameter essentially identical to this theoretical optimum. Additional theoretical results are provided to support the close relationship between spectral partitioning and the intrinsic Rent parameter.<<ETX>>","PeriodicalId":218056,"journal":{"name":"Proceedings EURO-DAC '92: European Design Automation Conference","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":"{\"title\":\"On the intrinsic Rent parameter and spectra-based partitioning methodologies\",\"authors\":\"L. Hagen, A. Kahng, F. Kurdahi, C. Ramachandran\",\"doi\":\"10.1109/EURDAC.1992.246242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complexity of circuit designs requires a top-down approach to layout synthesis. A good partitioning hierarchy, as measured by the associated Rent parameter, will correspond to an area-efficient layout. The intrinsic Rent parameter of a netlist is defined as the minimum possible Rent parameter of any partitioning hierarchy for the netlist. Experimental results show that spectra-based ratio cut partitioning methods yield partitioning hierarchies with the lowest observed Rent parameter over all benchmarks and over all algorithms tested. For examples where the intrinsic Rent parameter is known, spectral ratio cut partitioning yields a Rent parameter essentially identical to this theoretical optimum. Additional theoretical results are provided to support the close relationship between spectral partitioning and the intrinsic Rent parameter.<<ETX>>\",\"PeriodicalId\":218056,\"journal\":{\"name\":\"Proceedings EURO-DAC '92: European Design Automation Conference\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings EURO-DAC '92: European Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EURDAC.1992.246242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings EURO-DAC '92: European Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURDAC.1992.246242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the intrinsic Rent parameter and spectra-based partitioning methodologies
The complexity of circuit designs requires a top-down approach to layout synthesis. A good partitioning hierarchy, as measured by the associated Rent parameter, will correspond to an area-efficient layout. The intrinsic Rent parameter of a netlist is defined as the minimum possible Rent parameter of any partitioning hierarchy for the netlist. Experimental results show that spectra-based ratio cut partitioning methods yield partitioning hierarchies with the lowest observed Rent parameter over all benchmarks and over all algorithms tested. For examples where the intrinsic Rent parameter is known, spectral ratio cut partitioning yields a Rent parameter essentially identical to this theoretical optimum. Additional theoretical results are provided to support the close relationship between spectral partitioning and the intrinsic Rent parameter.<>