两种半盲源分离方法的性能评价

D. B. Haddad, M. R. Petraglia, P. B. Batalheiro
{"title":"两种半盲源分离方法的性能评价","authors":"D. B. Haddad, M. R. Petraglia, P. B. Batalheiro","doi":"10.1109/SPAWC.2008.4641604","DOIUrl":null,"url":null,"abstract":"Blind source separation methods resort to very weak hypothesis concerning the source signals, as well as the mixing matrix. This paper verifies experimentally the performance improvement in two different source separation algorithms when some statistical knowledge about the mixing matrix is used. A natural way of inserting such information in source separation methods is to put them in a Bayesian framework. This approach presents immediate applications in digital communication and speech signal processing systems, among many others.","PeriodicalId":197154,"journal":{"name":"2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance evaluation of two semi-blind source separation methods\",\"authors\":\"D. B. Haddad, M. R. Petraglia, P. B. Batalheiro\",\"doi\":\"10.1109/SPAWC.2008.4641604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blind source separation methods resort to very weak hypothesis concerning the source signals, as well as the mixing matrix. This paper verifies experimentally the performance improvement in two different source separation algorithms when some statistical knowledge about the mixing matrix is used. A natural way of inserting such information in source separation methods is to put them in a Bayesian framework. This approach presents immediate applications in digital communication and speech signal processing systems, among many others.\",\"PeriodicalId\":197154,\"journal\":{\"name\":\"2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2008.4641604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2008.4641604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

盲源分离方法依赖于对源信号和混合矩阵的非常弱的假设。本文通过实验验证了在混合矩阵中加入一些统计知识后,两种不同的源分离算法的性能提高。在源分离方法中插入此类信息的一种自然方法是将它们放在贝叶斯框架中。这种方法在数字通信和语音信号处理系统等方面有直接的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance evaluation of two semi-blind source separation methods
Blind source separation methods resort to very weak hypothesis concerning the source signals, as well as the mixing matrix. This paper verifies experimentally the performance improvement in two different source separation algorithms when some statistical knowledge about the mixing matrix is used. A natural way of inserting such information in source separation methods is to put them in a Bayesian framework. This approach presents immediate applications in digital communication and speech signal processing systems, among many others.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信