关于参数化路径和无弦路径问题

Yijia Chen, J. Flum
{"title":"关于参数化路径和无弦路径问题","authors":"Yijia Chen, J. Flum","doi":"10.1109/CCC.2007.21","DOIUrl":null,"url":null,"abstract":"We study the parameterized complexity of various path (and cycle) problems, the parameter being the length of the path. For example, we show that the problem of the existence of a maximal path of length k in a graph G is fixed-parameter tractable, while its counting version is #W[1]- complete. The corresponding problems for chordless (or induced) paths are W[2]-complete and #W[2]-complete respectively. With the tools developed in this paper we derive the NP-completeness of a related classical problem, thereby solving a problem due to Hedetniemi.","PeriodicalId":175854,"journal":{"name":"Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"On Parameterized Path and Chordless Path Problems\",\"authors\":\"Yijia Chen, J. Flum\",\"doi\":\"10.1109/CCC.2007.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the parameterized complexity of various path (and cycle) problems, the parameter being the length of the path. For example, we show that the problem of the existence of a maximal path of length k in a graph G is fixed-parameter tractable, while its counting version is #W[1]- complete. The corresponding problems for chordless (or induced) paths are W[2]-complete and #W[2]-complete respectively. With the tools developed in this paper we derive the NP-completeness of a related classical problem, thereby solving a problem due to Hedetniemi.\",\"PeriodicalId\":175854,\"journal\":{\"name\":\"Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.2007.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2007.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

我们研究了以路径长度为参数的各种路径(和循环)问题的参数化复杂度。例如,我们证明了图G中长度为k的最大路径的存在性问题是定参数可处理的,而它的计数版本是#W[1]-完备的。无弦(或诱导)路径对应的问题分别为W[2]-完备和#W[2]-完备。利用本文开发的工具,我们导出了一个相关经典问题的np完备性,从而解决了一个Hedetniemi问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Parameterized Path and Chordless Path Problems
We study the parameterized complexity of various path (and cycle) problems, the parameter being the length of the path. For example, we show that the problem of the existence of a maximal path of length k in a graph G is fixed-parameter tractable, while its counting version is #W[1]- complete. The corresponding problems for chordless (or induced) paths are W[2]-complete and #W[2]-complete respectively. With the tools developed in this paper we derive the NP-completeness of a related classical problem, thereby solving a problem due to Hedetniemi.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信