基于大数据的数据不平衡分类研究综述

Ramasubramanian., Hariharan Shanmugasundaram
{"title":"基于大数据的数据不平衡分类研究综述","authors":"Ramasubramanian., Hariharan Shanmugasundaram","doi":"10.5121/ijmit.2021.13302","DOIUrl":null,"url":null,"abstract":"Classification is one among the data mining function that assigns items in a collection to target categories or collection of data to provide more accurate predictions and analysis. Classification using supervised learning method aims to identify the category of the class to which a new data will fall under. With the advancement of technology and increase in the generation of real-time data from various sources like Internet, IoT and Social media it needs more processing and challenging. One such challenge in processing is data imbalance. In the imbalanced dataset, majority classes dominate over minority classes causing the machine learning classifiers to be more biased towards majority classes and also most classification algorithm predicts all the test data with majority classes. In this paper, the author analysis the data imbalance models using big data and classification algorithm.","PeriodicalId":335930,"journal":{"name":"International Journal of Managing Information Technology","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Review on Classification of Data Imbalance using BigData\",\"authors\":\"Ramasubramanian., Hariharan Shanmugasundaram\",\"doi\":\"10.5121/ijmit.2021.13302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification is one among the data mining function that assigns items in a collection to target categories or collection of data to provide more accurate predictions and analysis. Classification using supervised learning method aims to identify the category of the class to which a new data will fall under. With the advancement of technology and increase in the generation of real-time data from various sources like Internet, IoT and Social media it needs more processing and challenging. One such challenge in processing is data imbalance. In the imbalanced dataset, majority classes dominate over minority classes causing the machine learning classifiers to be more biased towards majority classes and also most classification algorithm predicts all the test data with majority classes. In this paper, the author analysis the data imbalance models using big data and classification algorithm.\",\"PeriodicalId\":335930,\"journal\":{\"name\":\"International Journal of Managing Information Technology\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Managing Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/ijmit.2021.13302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Managing Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijmit.2021.13302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

分类是数据挖掘功能中的一种,它将集合中的项分配给目标类别或数据集合,以提供更准确的预测和分析。使用监督学习方法进行分类的目的是确定新数据所属的类的类别。随着技术的进步和来自互联网、物联网和社交媒体等各种来源的实时数据的增加,它需要更多的处理和挑战。处理中的一个这样的挑战是数据不平衡。在不平衡的数据集中,多数类占主导地位,导致机器学习分类器更偏向于多数类,并且大多数分类算法预测所有具有多数类的测试数据。本文利用大数据和分类算法对数据不平衡模型进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Review on Classification of Data Imbalance using BigData
Classification is one among the data mining function that assigns items in a collection to target categories or collection of data to provide more accurate predictions and analysis. Classification using supervised learning method aims to identify the category of the class to which a new data will fall under. With the advancement of technology and increase in the generation of real-time data from various sources like Internet, IoT and Social media it needs more processing and challenging. One such challenge in processing is data imbalance. In the imbalanced dataset, majority classes dominate over minority classes causing the machine learning classifiers to be more biased towards majority classes and also most classification algorithm predicts all the test data with majority classes. In this paper, the author analysis the data imbalance models using big data and classification algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信