基于图的多资源半监督情感分类

Ge Xu, Houfeng Wang
{"title":"基于图的多资源半监督情感分类","authors":"Ge Xu, Houfeng Wang","doi":"10.1109/WI-IAT.2012.18","DOIUrl":null,"url":null,"abstract":"For sentiment classification, there exist a heterogeneous mass of resources such as semantic dictionaries, unlabeled corpora, and heuristic rules. In this paper, based on a graph-based semi-supervised algorithm, we focus on exploiting multiple resources to construct similarity matrices which are fused by simple but effective schemes. We reported encouraging results of the experiments in sentiment classification, which indicate that the adopted algorithm can utilize multiple resources to improve performance.","PeriodicalId":220218,"journal":{"name":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Multiple Resources in Graph-Based Semi-supervised Sentiment Classification\",\"authors\":\"Ge Xu, Houfeng Wang\",\"doi\":\"10.1109/WI-IAT.2012.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For sentiment classification, there exist a heterogeneous mass of resources such as semantic dictionaries, unlabeled corpora, and heuristic rules. In this paper, based on a graph-based semi-supervised algorithm, we focus on exploiting multiple resources to construct similarity matrices which are fused by simple but effective schemes. We reported encouraging results of the experiments in sentiment classification, which indicate that the adopted algorithm can utilize multiple resources to improve performance.\",\"PeriodicalId\":220218,\"journal\":{\"name\":\"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2012.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2012.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于情感分类,存在大量异构资源,如语义词典、未标记语料库和启发式规则。本文在基于图的半监督算法的基础上,重点研究了利用多资源构造相似矩阵,并用简单而有效的方案进行融合。我们报告了令人鼓舞的情感分类实验结果,这表明所采用的算法可以利用多种资源来提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Multiple Resources in Graph-Based Semi-supervised Sentiment Classification
For sentiment classification, there exist a heterogeneous mass of resources such as semantic dictionaries, unlabeled corpora, and heuristic rules. In this paper, based on a graph-based semi-supervised algorithm, we focus on exploiting multiple resources to construct similarity matrices which are fused by simple but effective schemes. We reported encouraging results of the experiments in sentiment classification, which indicate that the adopted algorithm can utilize multiple resources to improve performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信