基于柯西正则化稀疏表示的人脸幻觉

Shenming Qu, R. Hu, Shihong Chen, Zhongyuan Wang, Junjun Jiang, Cheng Yang
{"title":"基于柯西正则化稀疏表示的人脸幻觉","authors":"Shenming Qu, R. Hu, Shihong Chen, Zhongyuan Wang, Junjun Jiang, Cheng Yang","doi":"10.1109/ICASSP.2015.7178163","DOIUrl":null,"url":null,"abstract":"In dictionary-learning-based face hallucination, the testing image is represented as a linear combination of the training samples, and how to obtain the optimal coefficients is the primary issue. Sparse representation (SR) has ever been widely used in face hallucination, however, due to the fact that SR overemphasizes the sparsity, the obtained linear combination coefficients turn out far aggressively sparse, then leading to unsatisfactory hallucinated results. In this paper, we present a moderately sparse prior model for face hallucination problem with the L1 norm penalty in classic SR replaced by a Cauchy penalty term. An iterative optimization is further presented to solve the minimization of Cauchy regularized objective function. The experimental results on public face database demonstrate that our method is much more effective than state-of-the-art methods.","PeriodicalId":117666,"journal":{"name":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Face hallucination via Cauchy regularized sparse representation\",\"authors\":\"Shenming Qu, R. Hu, Shihong Chen, Zhongyuan Wang, Junjun Jiang, Cheng Yang\",\"doi\":\"10.1109/ICASSP.2015.7178163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In dictionary-learning-based face hallucination, the testing image is represented as a linear combination of the training samples, and how to obtain the optimal coefficients is the primary issue. Sparse representation (SR) has ever been widely used in face hallucination, however, due to the fact that SR overemphasizes the sparsity, the obtained linear combination coefficients turn out far aggressively sparse, then leading to unsatisfactory hallucinated results. In this paper, we present a moderately sparse prior model for face hallucination problem with the L1 norm penalty in classic SR replaced by a Cauchy penalty term. An iterative optimization is further presented to solve the minimization of Cauchy regularized objective function. The experimental results on public face database demonstrate that our method is much more effective than state-of-the-art methods.\",\"PeriodicalId\":117666,\"journal\":{\"name\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2015.7178163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2015.7178163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在基于字典学习的人脸幻觉中,测试图像被表示为训练样本的线性组合,如何获得最优系数是主要问题。稀疏表示(SR)曾被广泛应用于人脸幻觉,但由于SR过于强调稀疏性,使得得到的线性组合系数过于稀疏,从而导致幻觉效果不理想。本文提出了一个用柯西罚项代替经典SR中的L1范数罚项的中度稀疏先验模型。进一步提出了求解柯西正则化目标函数最小化问题的迭代优化方法。在公共人脸数据库上的实验结果表明,我们的方法比现有的方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face hallucination via Cauchy regularized sparse representation
In dictionary-learning-based face hallucination, the testing image is represented as a linear combination of the training samples, and how to obtain the optimal coefficients is the primary issue. Sparse representation (SR) has ever been widely used in face hallucination, however, due to the fact that SR overemphasizes the sparsity, the obtained linear combination coefficients turn out far aggressively sparse, then leading to unsatisfactory hallucinated results. In this paper, we present a moderately sparse prior model for face hallucination problem with the L1 norm penalty in classic SR replaced by a Cauchy penalty term. An iterative optimization is further presented to solve the minimization of Cauchy regularized objective function. The experimental results on public face database demonstrate that our method is much more effective than state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信