Jay D. Mehta, Fay N. Colah, Anurag P. Rao, Vineeta P. Pendse, Vyankatesh Bagal, Kevin P. Ajmera
{"title":"利用凹痕从扩展表面增强传热","authors":"Jay D. Mehta, Fay N. Colah, Anurag P. Rao, Vineeta P. Pendse, Vyankatesh Bagal, Kevin P. Ajmera","doi":"10.1115/IMECE2018-87345","DOIUrl":null,"url":null,"abstract":"This paper concentrates on comparing dimples to improve the heat transfer rate from extended surfaces under forced convection conditions. Dimples are milled on the surface of the fins while keeping the exposed surface area between the various designs as constant. Spherical dimples, ellipsoidal dimples, cylindrical dimples, and pyramidal dimples are selected as part of the paper. Experimental results are compared with results obtained from simulation. The paper concludes that surface modifications improve the heat transfer rates. The paper also compares the thermal performance of various shapes of dimples.","PeriodicalId":307820,"journal":{"name":"Volume 8B: Heat Transfer and Thermal Engineering","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat Transfer Augmentation From Extended Surface Using Dimples\",\"authors\":\"Jay D. Mehta, Fay N. Colah, Anurag P. Rao, Vineeta P. Pendse, Vyankatesh Bagal, Kevin P. Ajmera\",\"doi\":\"10.1115/IMECE2018-87345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concentrates on comparing dimples to improve the heat transfer rate from extended surfaces under forced convection conditions. Dimples are milled on the surface of the fins while keeping the exposed surface area between the various designs as constant. Spherical dimples, ellipsoidal dimples, cylindrical dimples, and pyramidal dimples are selected as part of the paper. Experimental results are compared with results obtained from simulation. The paper concludes that surface modifications improve the heat transfer rates. The paper also compares the thermal performance of various shapes of dimples.\",\"PeriodicalId\":307820,\"journal\":{\"name\":\"Volume 8B: Heat Transfer and Thermal Engineering\",\"volume\":\"212 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 8B: Heat Transfer and Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-87345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 8B: Heat Transfer and Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-87345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Heat Transfer Augmentation From Extended Surface Using Dimples
This paper concentrates on comparing dimples to improve the heat transfer rate from extended surfaces under forced convection conditions. Dimples are milled on the surface of the fins while keeping the exposed surface area between the various designs as constant. Spherical dimples, ellipsoidal dimples, cylindrical dimples, and pyramidal dimples are selected as part of the paper. Experimental results are compared with results obtained from simulation. The paper concludes that surface modifications improve the heat transfer rates. The paper also compares the thermal performance of various shapes of dimples.