提升Python在Intel处理器上的性能:优化音乐识别的案例研究

Yuanzhe Li, L. Schwiebert
{"title":"提升Python在Intel处理器上的性能:优化音乐识别的案例研究","authors":"Yuanzhe Li, L. Schwiebert","doi":"10.1109/PYHPC.2016.7","DOIUrl":null,"url":null,"abstract":"We present a case study of optimizing a Python-based music recognition application on Intel Haswell Xeon processor. With support from Numpy and Scipy, Python addresses the requirements of the music recognition problem with math library utilization and special structures for data access. However, a general optimized Python application cannot fully utilize the latest high performance multicore processors. In this study, we survey an existing open-source music recognition application, written in Python, to explore the effect of applying changes to the Scipy and Numpy libraries to achieve full processor resource occupancy and reduce code latency. Instead of comparing across many different architectures, we focus on Intel high performance processors that have multiple cores and vector registers, and we attempt to preserve both user-friendliness and code scalability so that the revised library functions can be ported to other platforms and require no additional code changes.","PeriodicalId":178771,"journal":{"name":"2016 6th Workshop on Python for High-Performance and Scientific Computing (PyHPC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Boosting Python Performance on Intel Processors: A Case Study of Optimizing Music Recognition\",\"authors\":\"Yuanzhe Li, L. Schwiebert\",\"doi\":\"10.1109/PYHPC.2016.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a case study of optimizing a Python-based music recognition application on Intel Haswell Xeon processor. With support from Numpy and Scipy, Python addresses the requirements of the music recognition problem with math library utilization and special structures for data access. However, a general optimized Python application cannot fully utilize the latest high performance multicore processors. In this study, we survey an existing open-source music recognition application, written in Python, to explore the effect of applying changes to the Scipy and Numpy libraries to achieve full processor resource occupancy and reduce code latency. Instead of comparing across many different architectures, we focus on Intel high performance processors that have multiple cores and vector registers, and we attempt to preserve both user-friendliness and code scalability so that the revised library functions can be ported to other platforms and require no additional code changes.\",\"PeriodicalId\":178771,\"journal\":{\"name\":\"2016 6th Workshop on Python for High-Performance and Scientific Computing (PyHPC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th Workshop on Python for High-Performance and Scientific Computing (PyHPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PYHPC.2016.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th Workshop on Python for High-Performance and Scientific Computing (PyHPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PYHPC.2016.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一个在Intel Haswell Xeon处理器上优化基于python的音乐识别应用的案例研究。在Numpy和Scipy的支持下,Python通过利用数学库和数据访问的特殊结构来解决音乐识别问题的需求。然而,一般优化的Python应用程序不能充分利用最新的高性能多核处理器。在本研究中,我们调查了一个用Python编写的现有开源音乐识别应用程序,以探索对Scipy和Numpy库进行更改以实现完全处理器资源占用和减少代码延迟的效果。我们没有比较许多不同的架构,而是将重点放在具有多核和矢量寄存器的英特尔高性能处理器上,我们试图保持用户友好性和代码可扩展性,以便修改后的库函数可以移植到其他平台,而不需要额外的代码更改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boosting Python Performance on Intel Processors: A Case Study of Optimizing Music Recognition
We present a case study of optimizing a Python-based music recognition application on Intel Haswell Xeon processor. With support from Numpy and Scipy, Python addresses the requirements of the music recognition problem with math library utilization and special structures for data access. However, a general optimized Python application cannot fully utilize the latest high performance multicore processors. In this study, we survey an existing open-source music recognition application, written in Python, to explore the effect of applying changes to the Scipy and Numpy libraries to achieve full processor resource occupancy and reduce code latency. Instead of comparing across many different architectures, we focus on Intel high performance processors that have multiple cores and vector registers, and we attempt to preserve both user-friendliness and code scalability so that the revised library functions can be ported to other platforms and require no additional code changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信