角偏劳伦多项式代数的a1 -同伦不变量

Gonçalo Tabuada
{"title":"角偏劳伦多项式代数的a1 -同伦不变量","authors":"Gonçalo Tabuada","doi":"10.4171/jncg/11-4-12","DOIUrl":null,"url":null,"abstract":"In this note we prove some structural properties of all the A1-homotopy invariants of corner skew Laurent polynomial algebras. As an application, we compute de mod-l algebraic K-theory of Leavitt path algebras using solely the kernel/cokernel of the incidence matrix. This leads naturally to some vanishing and divisibility properties of the algebraic K-theory of these algebras.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A1-homotopy invariants of corner skew Laurent polynomial algebras\",\"authors\":\"Gonçalo Tabuada\",\"doi\":\"10.4171/jncg/11-4-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we prove some structural properties of all the A1-homotopy invariants of corner skew Laurent polynomial algebras. As an application, we compute de mod-l algebraic K-theory of Leavitt path algebras using solely the kernel/cokernel of the incidence matrix. This leads naturally to some vanishing and divisibility properties of the algebraic K-theory of these algebras.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/jncg/11-4-12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/jncg/11-4-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文证明了角偏劳伦多项式代数的所有a1 -同伦不变量的一些结构性质。作为应用,我们仅利用关联矩阵的核/核计算了Leavitt路径代数的模1代数k理论。这自然导致了这些代数的代数k理论的一些消失性和可整除性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A1-homotopy invariants of corner skew Laurent polynomial algebras
In this note we prove some structural properties of all the A1-homotopy invariants of corner skew Laurent polynomial algebras. As an application, we compute de mod-l algebraic K-theory of Leavitt path algebras using solely the kernel/cokernel of the incidence matrix. This leads naturally to some vanishing and divisibility properties of the algebraic K-theory of these algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信