多分量图类的渐近枚举

K. Panagiotou, Leon Ramzews
{"title":"多分量图类的渐近枚举","authors":"K. Panagiotou, Leon Ramzews","doi":"10.1137/1.9781611975062.12","DOIUrl":null,"url":null,"abstract":"We consider graph classes $\\mathcal G$ in which every graph has components in a class $\\mathcal{C}$ of connected graphs. We provide a framework for the asymptotic study of $\\lvert\\mathcal{G}_{n,N}\\rvert$, the number of graphs in $\\mathcal{G}$ with $n$ vertices and $N:=\\lfloor\\lambda n\\rfloor$ components, where $\\lambda\\in(0,1)$. Assuming that the number of graphs with $n$ vertices in $\\mathcal{C}$ satisfies \\begin{align*} \\lvert \\mathcal{C}_n\\rvert\\sim b n^{-(1+\\alpha)}\\rho^{-n}n!, \\quad n\\to \\infty \\end{align*} for some $b,\\rho>0$ and $\\alpha>1$ -- a property commonly encountered in graph enumeration -- we show that \\begin{align*} \\lvert\\mathcal{G}_{n,N}\\rvert\\sim c(\\lambda) n^{f(\\lambda)} (\\log n)^{g(\\lambda)} \\rho^{-n}h(\\lambda)^{N}\\frac{n!}{N!}, \\quad n\\to \\infty \\end{align*} for explicitly given $c(\\lambda),f(\\lambda),g(\\lambda)$ and $h(\\lambda)$. These functions are piecewise continuous with a discontinuity at a critical value $\\lambda^{*}$, which we also determine. The central idea in our approach is to sample objects of $\\cal G$ randomly by so-called Boltzmann generators in order to translate enumerative problems to the analysis of iid random variables. By that we are able to exploit local limit theorems and large deviation results well-known from probability theory to prove our claims. The main results are formulated for generic combinatorial classes satisfying the SET-construction.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotic Enumeration of Graph Classes with Many Components\",\"authors\":\"K. Panagiotou, Leon Ramzews\",\"doi\":\"10.1137/1.9781611975062.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider graph classes $\\\\mathcal G$ in which every graph has components in a class $\\\\mathcal{C}$ of connected graphs. We provide a framework for the asymptotic study of $\\\\lvert\\\\mathcal{G}_{n,N}\\\\rvert$, the number of graphs in $\\\\mathcal{G}$ with $n$ vertices and $N:=\\\\lfloor\\\\lambda n\\\\rfloor$ components, where $\\\\lambda\\\\in(0,1)$. Assuming that the number of graphs with $n$ vertices in $\\\\mathcal{C}$ satisfies \\\\begin{align*} \\\\lvert \\\\mathcal{C}_n\\\\rvert\\\\sim b n^{-(1+\\\\alpha)}\\\\rho^{-n}n!, \\\\quad n\\\\to \\\\infty \\\\end{align*} for some $b,\\\\rho>0$ and $\\\\alpha>1$ -- a property commonly encountered in graph enumeration -- we show that \\\\begin{align*} \\\\lvert\\\\mathcal{G}_{n,N}\\\\rvert\\\\sim c(\\\\lambda) n^{f(\\\\lambda)} (\\\\log n)^{g(\\\\lambda)} \\\\rho^{-n}h(\\\\lambda)^{N}\\\\frac{n!}{N!}, \\\\quad n\\\\to \\\\infty \\\\end{align*} for explicitly given $c(\\\\lambda),f(\\\\lambda),g(\\\\lambda)$ and $h(\\\\lambda)$. These functions are piecewise continuous with a discontinuity at a critical value $\\\\lambda^{*}$, which we also determine. The central idea in our approach is to sample objects of $\\\\cal G$ randomly by so-called Boltzmann generators in order to translate enumerative problems to the analysis of iid random variables. By that we are able to exploit local limit theorems and large deviation results well-known from probability theory to prove our claims. The main results are formulated for generic combinatorial classes satisfying the SET-construction.\",\"PeriodicalId\":340112,\"journal\":{\"name\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611975062.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611975062.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑图类$\mathcal G$,其中每个图都有一个连接图类$\mathcal{C}$中的组件。我们为$\lvert\mathcal{G}_{n,N}\rvert$的渐近研究提供了一个框架,在$\mathcal{G}$中有$n$个顶点和$N:=\lfloor\lambda n\rfloor$个分量的图的数目,其中$\lambda\in(0,1)$。假设在$\mathcal{C}$中具有$n$顶点的图的数量对于某些$b,\rho>0$和$\alpha>1$满足\begin{align*} \lvert \mathcal{C}_n\rvert\sim b n^{-(1+\alpha)}\rho^{-n}n!, \quad n\to \infty \end{align*}(图枚举中经常遇到的一个属性),我们显示\begin{align*} \lvert\mathcal{G}_{n,N}\rvert\sim c(\lambda) n^{f(\lambda)} (\log n)^{g(\lambda)} \rho^{-n}h(\lambda)^{N}\frac{n!}{N!}, \quad n\to \infty \end{align*}对于显式给定$c(\lambda),f(\lambda),g(\lambda)$和$h(\lambda)$。这些函数是分段连续的,在临界值$\lambda^{*}$处具有不连续,我们也确定了这一点。我们方法的中心思想是通过所谓的玻尔兹曼生成器随机采样$\cal G$对象,以便将枚举问题转化为iid随机变量的分析。这样,我们就可以利用概率论中众所周知的局部极限定理和大偏差结果来证明我们的主张。给出了满足set构造的泛型组合类的主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic Enumeration of Graph Classes with Many Components
We consider graph classes $\mathcal G$ in which every graph has components in a class $\mathcal{C}$ of connected graphs. We provide a framework for the asymptotic study of $\lvert\mathcal{G}_{n,N}\rvert$, the number of graphs in $\mathcal{G}$ with $n$ vertices and $N:=\lfloor\lambda n\rfloor$ components, where $\lambda\in(0,1)$. Assuming that the number of graphs with $n$ vertices in $\mathcal{C}$ satisfies \begin{align*} \lvert \mathcal{C}_n\rvert\sim b n^{-(1+\alpha)}\rho^{-n}n!, \quad n\to \infty \end{align*} for some $b,\rho>0$ and $\alpha>1$ -- a property commonly encountered in graph enumeration -- we show that \begin{align*} \lvert\mathcal{G}_{n,N}\rvert\sim c(\lambda) n^{f(\lambda)} (\log n)^{g(\lambda)} \rho^{-n}h(\lambda)^{N}\frac{n!}{N!}, \quad n\to \infty \end{align*} for explicitly given $c(\lambda),f(\lambda),g(\lambda)$ and $h(\lambda)$. These functions are piecewise continuous with a discontinuity at a critical value $\lambda^{*}$, which we also determine. The central idea in our approach is to sample objects of $\cal G$ randomly by so-called Boltzmann generators in order to translate enumerative problems to the analysis of iid random variables. By that we are able to exploit local limit theorems and large deviation results well-known from probability theory to prove our claims. The main results are formulated for generic combinatorial classes satisfying the SET-construction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信