{"title":"一类具有状态延迟和控制约束的非线性系统的神经网络有限水平最优控制","authors":"Xiaofeng Lin, N. Cao, Yuzhang Lin","doi":"10.1109/IJCNN.2013.6707055","DOIUrl":null,"url":null,"abstract":"In this paper, a new finite horizon iterative ADP algorithm is used to solve a class of nonlinear systems with state delay and control constraints problem and finite time ε-optimal control is obtained. First of all, a new performance index function is designed to deal with the control constraints, the discrete nonlinear systems HJB equation with state delay is presented. Second, the iterative process and mathematical proof of the convergence is illustrated for the proposed finite horizon ADP algorithm. Approximate optimal control is obtained by introducing an error bond ε. Two BP neural networks are developed to approximate control law function and performance index function in our ADP algorithm. Finally, comparing simulation cases are used to verify the effectiveness of the method proposed in this paper.","PeriodicalId":376975,"journal":{"name":"The 2013 International Joint Conference on Neural Networks (IJCNN)","volume":"235 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural network based finite horizon optimal control for a class of nonlinear systems with state delay and control constraints\",\"authors\":\"Xiaofeng Lin, N. Cao, Yuzhang Lin\",\"doi\":\"10.1109/IJCNN.2013.6707055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new finite horizon iterative ADP algorithm is used to solve a class of nonlinear systems with state delay and control constraints problem and finite time ε-optimal control is obtained. First of all, a new performance index function is designed to deal with the control constraints, the discrete nonlinear systems HJB equation with state delay is presented. Second, the iterative process and mathematical proof of the convergence is illustrated for the proposed finite horizon ADP algorithm. Approximate optimal control is obtained by introducing an error bond ε. Two BP neural networks are developed to approximate control law function and performance index function in our ADP algorithm. Finally, comparing simulation cases are used to verify the effectiveness of the method proposed in this paper.\",\"PeriodicalId\":376975,\"journal\":{\"name\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"235 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2013.6707055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6707055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neural network based finite horizon optimal control for a class of nonlinear systems with state delay and control constraints
In this paper, a new finite horizon iterative ADP algorithm is used to solve a class of nonlinear systems with state delay and control constraints problem and finite time ε-optimal control is obtained. First of all, a new performance index function is designed to deal with the control constraints, the discrete nonlinear systems HJB equation with state delay is presented. Second, the iterative process and mathematical proof of the convergence is illustrated for the proposed finite horizon ADP algorithm. Approximate optimal control is obtained by introducing an error bond ε. Two BP neural networks are developed to approximate control law function and performance index function in our ADP algorithm. Finally, comparing simulation cases are used to verify the effectiveness of the method proposed in this paper.