股票市场的预期收益和风险

M. Brennan, Alex P. Taylor
{"title":"股票市场的预期收益和风险","authors":"M. Brennan, Alex P. Taylor","doi":"10.2139/ssrn.3331573","DOIUrl":null,"url":null,"abstract":"We present new evidence on the predictability of aggregate market returns by developing two new prediction models, one risk-based, and the other purely statistical. The pricing kernel model expresses the expected return as the covariance of the market return with a pricing kernel that is a linear function of portfolio returns. The discount rate model predicts the expected return directly as a function of weighted past portfolio returns. These models provide independent evidence of predictability, with R2 of 16-19% for 1-year returns. We show that innovations in the pricing kernel are associated with the cash flow component of the market return.","PeriodicalId":187811,"journal":{"name":"ERN: Other Econometric Modeling: Capital Markets - Risk (Topic)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Expected Returns and Risk in the Stock Market\",\"authors\":\"M. Brennan, Alex P. Taylor\",\"doi\":\"10.2139/ssrn.3331573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present new evidence on the predictability of aggregate market returns by developing two new prediction models, one risk-based, and the other purely statistical. The pricing kernel model expresses the expected return as the covariance of the market return with a pricing kernel that is a linear function of portfolio returns. The discount rate model predicts the expected return directly as a function of weighted past portfolio returns. These models provide independent evidence of predictability, with R2 of 16-19% for 1-year returns. We show that innovations in the pricing kernel are associated with the cash flow component of the market return.\",\"PeriodicalId\":187811,\"journal\":{\"name\":\"ERN: Other Econometric Modeling: Capital Markets - Risk (Topic)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometric Modeling: Capital Markets - Risk (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3331573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometric Modeling: Capital Markets - Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3331573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们通过开发两种新的预测模型,一种基于风险,另一种纯粹的统计模型,为总市场回报的可预测性提供了新的证据。定价核模型将预期收益表示为市场收益与定价核的协方差,定价核是投资组合收益的线性函数。贴现率模型以加权过去投资组合收益的函数直接预测预期收益。这些模型提供了独立的可预测性证据,一年期收益的R2为16-19%。我们表明,定价内核的创新与市场回报的现金流成分有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expected Returns and Risk in the Stock Market
We present new evidence on the predictability of aggregate market returns by developing two new prediction models, one risk-based, and the other purely statistical. The pricing kernel model expresses the expected return as the covariance of the market return with a pricing kernel that is a linear function of portfolio returns. The discount rate model predicts the expected return directly as a function of weighted past portfolio returns. These models provide independent evidence of predictability, with R2 of 16-19% for 1-year returns. We show that innovations in the pricing kernel are associated with the cash flow component of the market return.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信