基于机器学习(kNN-QSPR)方法的折射率数学建模

Rifkat Davronov, B. Rasulev, F. Adilova
{"title":"基于机器学习(kNN-QSPR)方法的折射率数学建模","authors":"Rifkat Davronov, B. Rasulev, F. Adilova","doi":"10.1109/AICT50176.2020.9368648","DOIUrl":null,"url":null,"abstract":"In the present work, we created new software in R system, strictly following to the kNN-QSPR approach, used PaDEL and Dragon Descriptor software for generation of initial set of descriptors and developed the program for automatic scaling. Based on this new software, we propose models of quantitative relationships between refractive indices (RI) and polymer structure. An important conclusion of this study is confirmed by the correct interpretation of the constructed models.","PeriodicalId":136491,"journal":{"name":"2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical modeling of refractive index based on machine learning (kNN-QSPR) method\",\"authors\":\"Rifkat Davronov, B. Rasulev, F. Adilova\",\"doi\":\"10.1109/AICT50176.2020.9368648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work, we created new software in R system, strictly following to the kNN-QSPR approach, used PaDEL and Dragon Descriptor software for generation of initial set of descriptors and developed the program for automatic scaling. Based on this new software, we propose models of quantitative relationships between refractive indices (RI) and polymer structure. An important conclusion of this study is confirmed by the correct interpretation of the constructed models.\",\"PeriodicalId\":136491,\"journal\":{\"name\":\"2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICT50176.2020.9368648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICT50176.2020.9368648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本工作中,我们在R系统中创建了新的软件,严格遵循kNN-QSPR方法,使用PaDEL和Dragon Descriptor软件生成初始描述符集,并开发了自动缩放程序。基于该软件,我们提出了折射率(RI)与聚合物结构之间的定量关系模型。对所构建模型的正确解释证实了本研究的一个重要结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical modeling of refractive index based on machine learning (kNN-QSPR) method
In the present work, we created new software in R system, strictly following to the kNN-QSPR approach, used PaDEL and Dragon Descriptor software for generation of initial set of descriptors and developed the program for automatic scaling. Based on this new software, we propose models of quantitative relationships between refractive indices (RI) and polymer structure. An important conclusion of this study is confirmed by the correct interpretation of the constructed models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信