利用局部模型网络训练有限元数据,设计气动胀头试验的半物理动力学模型

G. Matthiesen, A. Braun, O. Reinertz, K. Schmitz
{"title":"利用局部模型网络训练有限元数据,设计气动胀头试验的半物理动力学模型","authors":"G. Matthiesen, A. Braun, O. Reinertz, K. Schmitz","doi":"10.1109/GFPS.2018.8472362","DOIUrl":null,"url":null,"abstract":"The modelling of hydraulic and pneumatic systems is essential for the machine development and control design process. In most cases, lumped parameter models provide sufficient accuracy. However, for some fluid power systems this approach doesn’t result in a useful model for example due to non-linearities of the system. An approach to overcome this issue is the use of local model networks. In this paper, a brief introduction into local model networks is given presenting the basic idea and the approximation algorithm used to derive the network. In the following, a calculation scheme is presented that allows fast evaluation of the network and thus enables the implementation into machine control for small cycle-times. The local model network approach is used to model the pneumatic hot gas bulge test, which is used in material characterisation. A database generated from FEM simulation is applied to set up the local model network. The final result is the comparison and discussion of the local model network output and a training set generated from FEM simulation.","PeriodicalId":273799,"journal":{"name":"2018 Global Fluid Power Society PhD Symposium (GFPS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a semi-physical dynamic model for a pneumatic bulge test using local model networks trained with FEM data\",\"authors\":\"G. Matthiesen, A. Braun, O. Reinertz, K. Schmitz\",\"doi\":\"10.1109/GFPS.2018.8472362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The modelling of hydraulic and pneumatic systems is essential for the machine development and control design process. In most cases, lumped parameter models provide sufficient accuracy. However, for some fluid power systems this approach doesn’t result in a useful model for example due to non-linearities of the system. An approach to overcome this issue is the use of local model networks. In this paper, a brief introduction into local model networks is given presenting the basic idea and the approximation algorithm used to derive the network. In the following, a calculation scheme is presented that allows fast evaluation of the network and thus enables the implementation into machine control for small cycle-times. The local model network approach is used to model the pneumatic hot gas bulge test, which is used in material characterisation. A database generated from FEM simulation is applied to set up the local model network. The final result is the comparison and discussion of the local model network output and a training set generated from FEM simulation.\",\"PeriodicalId\":273799,\"journal\":{\"name\":\"2018 Global Fluid Power Society PhD Symposium (GFPS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Global Fluid Power Society PhD Symposium (GFPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GFPS.2018.8472362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Global Fluid Power Society PhD Symposium (GFPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GFPS.2018.8472362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

液压和气动系统的建模对机床的开发和控制设计过程至关重要。在大多数情况下,集总参数模型提供了足够的准确性。然而,对于一些流体动力系统,由于系统的非线性,这种方法不能得到一个有用的模型。克服这个问题的一种方法是使用局部模型网络。本文简要介绍了局部模型网络的基本思想和用于推导网络的近似算法。在下面,提出了一种计算方案,允许快速评估网络,从而能够实现小周期时间的机器控制。采用局部模型网络方法对材料表征中常用的气动热胀试验进行建模。利用有限元模拟生成的数据库建立了局部模型网络。最后将局部模型网络输出与有限元模拟生成的训练集进行了比较和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of a semi-physical dynamic model for a pneumatic bulge test using local model networks trained with FEM data
The modelling of hydraulic and pneumatic systems is essential for the machine development and control design process. In most cases, lumped parameter models provide sufficient accuracy. However, for some fluid power systems this approach doesn’t result in a useful model for example due to non-linearities of the system. An approach to overcome this issue is the use of local model networks. In this paper, a brief introduction into local model networks is given presenting the basic idea and the approximation algorithm used to derive the network. In the following, a calculation scheme is presented that allows fast evaluation of the network and thus enables the implementation into machine control for small cycle-times. The local model network approach is used to model the pneumatic hot gas bulge test, which is used in material characterisation. A database generated from FEM simulation is applied to set up the local model network. The final result is the comparison and discussion of the local model network output and a training set generated from FEM simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信