朗的整数幂和公式的一个改进

J. Cereceda
{"title":"朗的整数幂和公式的一个改进","authors":"J. Cereceda","doi":"10.12988/imf.2023.912382","DOIUrl":null,"url":null,"abstract":"In 2011, W. Lang derived a novel, explicit formula for the sum of powers of integers $S_k(n) = 1^k + 2^k + \\cdots + n^k$ involving simultaneously the Stirling numbers of the first and second kind. In this note, we first recall and then slightly refine Lang's formula for $S_k(n)$. As it turns out, the refined Lang's formula constitutes a special case of a well-known relationship between the power sums, the elementary symmetric functions, and the complete homogeneous symmetric functions. In addition, we provide several applications of this general relationship.","PeriodicalId":107214,"journal":{"name":"International Mathematical Forum","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A refinement of Lang's formula for the sums of powers of integers\",\"authors\":\"J. Cereceda\",\"doi\":\"10.12988/imf.2023.912382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2011, W. Lang derived a novel, explicit formula for the sum of powers of integers $S_k(n) = 1^k + 2^k + \\\\cdots + n^k$ involving simultaneously the Stirling numbers of the first and second kind. In this note, we first recall and then slightly refine Lang's formula for $S_k(n)$. As it turns out, the refined Lang's formula constitutes a special case of a well-known relationship between the power sums, the elementary symmetric functions, and the complete homogeneous symmetric functions. In addition, we provide several applications of this general relationship.\",\"PeriodicalId\":107214,\"journal\":{\"name\":\"International Mathematical Forum\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Mathematical Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12988/imf.2023.912382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematical Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/imf.2023.912382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2011年,W. Lang导出了一个新颖的显式公式,用于整数S_k(n) = 1^k + 2^k + \cdots + n^k$,同时涉及第一类和第二类斯特林数。在本文中,我们首先回顾并稍微改进Lang的S_k(n)公式。事实证明,改进的Lang公式构成了幂和、初等对称函数和完全齐次对称函数之间众所周知的关系的一种特殊情况。此外,我们还提供了这种一般关系的几种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A refinement of Lang's formula for the sums of powers of integers
In 2011, W. Lang derived a novel, explicit formula for the sum of powers of integers $S_k(n) = 1^k + 2^k + \cdots + n^k$ involving simultaneously the Stirling numbers of the first and second kind. In this note, we first recall and then slightly refine Lang's formula for $S_k(n)$. As it turns out, the refined Lang's formula constitutes a special case of a well-known relationship between the power sums, the elementary symmetric functions, and the complete homogeneous symmetric functions. In addition, we provide several applications of this general relationship.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信