基于模型的传感器融合与滤波在半自主机器人车辆定位中的应用*

C. Teodorescu, Irving Caplan, Harry Eberle, T. Carlson
{"title":"基于模型的传感器融合与滤波在半自主机器人车辆定位中的应用*","authors":"C. Teodorescu, Irving Caplan, Harry Eberle, T. Carlson","doi":"10.23919/ecc54610.2021.9654877","DOIUrl":null,"url":null,"abstract":"This paper refines a physically-inspired model governing the dynamic motion of a vehicle. We present a method used to perform experimental parameter calibration, and then use this model to build an observer (an extended Kalman filter). Experimental results with a robotic vehicle fitted with a prototype kit focus on recovering the truthful real-world information in the context of systematic errors (a faulty wheel encoder sensor), randomly occurring errors (a faulty ultrasonic sensor) and simplifying model assumptions (e.g. usage of two identical motors). We show that our model-based approach is able to perform reasonably well even under these extreme circumstances.","PeriodicalId":105499,"journal":{"name":"2021 European Control Conference (ECC)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Model-based sensor fusion and filtering for localization of a semi-autonomous robotic vehicle*\",\"authors\":\"C. Teodorescu, Irving Caplan, Harry Eberle, T. Carlson\",\"doi\":\"10.23919/ecc54610.2021.9654877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper refines a physically-inspired model governing the dynamic motion of a vehicle. We present a method used to perform experimental parameter calibration, and then use this model to build an observer (an extended Kalman filter). Experimental results with a robotic vehicle fitted with a prototype kit focus on recovering the truthful real-world information in the context of systematic errors (a faulty wheel encoder sensor), randomly occurring errors (a faulty ultrasonic sensor) and simplifying model assumptions (e.g. usage of two identical motors). We show that our model-based approach is able to perform reasonably well even under these extreme circumstances.\",\"PeriodicalId\":105499,\"journal\":{\"name\":\"2021 European Control Conference (ECC)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 European Control Conference (ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ecc54610.2021.9654877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ecc54610.2021.9654877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文改进了一个受物理启发的控制车辆动态运动的模型。我们提出了一种用于进行实验参数校准的方法,然后使用该模型构建观测器(扩展卡尔曼滤波器)。配备原型套件的机器人车辆的实验结果侧重于在系统错误(车轮编码器传感器故障),随机发生的错误(超声波传感器故障)和简化模型假设(例如使用两个相同的电机)的背景下恢复真实的现实世界信息。我们表明,即使在这些极端情况下,我们基于模型的方法也能够表现得相当好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-based sensor fusion and filtering for localization of a semi-autonomous robotic vehicle*
This paper refines a physically-inspired model governing the dynamic motion of a vehicle. We present a method used to perform experimental parameter calibration, and then use this model to build an observer (an extended Kalman filter). Experimental results with a robotic vehicle fitted with a prototype kit focus on recovering the truthful real-world information in the context of systematic errors (a faulty wheel encoder sensor), randomly occurring errors (a faulty ultrasonic sensor) and simplifying model assumptions (e.g. usage of two identical motors). We show that our model-based approach is able to perform reasonably well even under these extreme circumstances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信