基于pso的意大利中小企业信誉度评价的Murame参数调整

M. Corazza, G. Fasano, S. Funari, R. Gusso
{"title":"基于pso的意大利中小企业信誉度评价的Murame参数调整","authors":"M. Corazza, G. Fasano, S. Funari, R. Gusso","doi":"10.2139/ssrn.2934929","DOIUrl":null,"url":null,"abstract":"In this work we use a MultiCriteria Decision Analysis (MCDA) model to evalu- ate the creditworthiness of a sample of Italian Small and Medium-sized Enterprises (SMEs), on the basis of their balance sheet data provided by the AIDA database. Our methodology is able to consider simultaneously different factors affecting the firmsO solvency level, and can produce results in terms of scoring, classification into homogeneous rating classes and migration probabilities. In this contribution we compare the results obtained considering two scenarios. On one hand, we experience an exogenous specification of the parameters that describe the preference structure implicit in the used MCDA model. On the other hand, we consider the results obtained using a preference disaggregation method to endogenously determine some of the model parameters. Because of the complexity of the obtained math- ematical programming problem, we use an heuristic methodology, namely Particle Swarm Optimization (PSO), which provides a reasonable compromise between the quality of the solution and the computational burden.","PeriodicalId":200007,"journal":{"name":"ERN: Statistical Decision Theory; Operations Research (Topic)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PSO-Based Tuning of Murame Parameters for Creditworthiness Evaluation of Italian SMEs\",\"authors\":\"M. Corazza, G. Fasano, S. Funari, R. Gusso\",\"doi\":\"10.2139/ssrn.2934929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we use a MultiCriteria Decision Analysis (MCDA) model to evalu- ate the creditworthiness of a sample of Italian Small and Medium-sized Enterprises (SMEs), on the basis of their balance sheet data provided by the AIDA database. Our methodology is able to consider simultaneously different factors affecting the firmsO solvency level, and can produce results in terms of scoring, classification into homogeneous rating classes and migration probabilities. In this contribution we compare the results obtained considering two scenarios. On one hand, we experience an exogenous specification of the parameters that describe the preference structure implicit in the used MCDA model. On the other hand, we consider the results obtained using a preference disaggregation method to endogenously determine some of the model parameters. Because of the complexity of the obtained math- ematical programming problem, we use an heuristic methodology, namely Particle Swarm Optimization (PSO), which provides a reasonable compromise between the quality of the solution and the computational burden.\",\"PeriodicalId\":200007,\"journal\":{\"name\":\"ERN: Statistical Decision Theory; Operations Research (Topic)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Statistical Decision Theory; Operations Research (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2934929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Statistical Decision Theory; Operations Research (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2934929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们使用多标准决策分析(MCDA)模型来评估意大利中小企业(sme)样本的信誉,基于AIDA数据库提供的资产负债表数据。我们的方法能够同时考虑影响公司偿付能力水平的不同因素,并可以在评分、同质评级类别分类和迁移概率方面产生结果。在这篇文章中,我们比较了考虑两种情况获得的结果。一方面,我们经历了描述所使用的MCDA模型中隐含的偏好结构的参数的外生规范。另一方面,我们考虑使用偏好分解方法得到的结果来内生地确定一些模型参数。由于所得到的数学规划问题的复杂性,我们使用了一种启发式方法,即粒子群优化(PSO),它在解的质量和计算负担之间提供了一个合理的折衷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PSO-Based Tuning of Murame Parameters for Creditworthiness Evaluation of Italian SMEs
In this work we use a MultiCriteria Decision Analysis (MCDA) model to evalu- ate the creditworthiness of a sample of Italian Small and Medium-sized Enterprises (SMEs), on the basis of their balance sheet data provided by the AIDA database. Our methodology is able to consider simultaneously different factors affecting the firmsO solvency level, and can produce results in terms of scoring, classification into homogeneous rating classes and migration probabilities. In this contribution we compare the results obtained considering two scenarios. On one hand, we experience an exogenous specification of the parameters that describe the preference structure implicit in the used MCDA model. On the other hand, we consider the results obtained using a preference disaggregation method to endogenously determine some of the model parameters. Because of the complexity of the obtained math- ematical programming problem, we use an heuristic methodology, namely Particle Swarm Optimization (PSO), which provides a reasonable compromise between the quality of the solution and the computational burden.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信