P. Horák, R. Chapman, F. Poletti, J. Frey, W. Brocklesby
{"title":"高功率短脉冲激励下充氩毛细管电离非线性光模耦合","authors":"P. Horák, R. Chapman, F. Poletti, J. Frey, W. Brocklesby","doi":"10.1109/CLEOE-EQEC.2009.5196318","DOIUrl":null,"url":null,"abstract":"High-power ultrashort laser pulses at near-infrared wavelengths propagating in gas-filled capillaries can form a compact source of XUV/soft X-ray radiation by high-harmonic generation (HHG) [1]. Maximization of the frequency conversion efficiency requires a detailed understanding of the atomic interaction mechanism as well as the propagation properties of both the near-infrared pump in the presence of a partially ionized gas and of the generated XUV. Here we focus on the numerical simulation of pulse propagation in a parameter regime dominated by plasma effects and by the nonlinear properties of ionization, and compare the results with experimental observations.","PeriodicalId":346720,"journal":{"name":"CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference","volume":"236 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear optical mode coupling by ionization in an Ar-filled capillary with high-power short-pulse excitation\",\"authors\":\"P. Horák, R. Chapman, F. Poletti, J. Frey, W. Brocklesby\",\"doi\":\"10.1109/CLEOE-EQEC.2009.5196318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-power ultrashort laser pulses at near-infrared wavelengths propagating in gas-filled capillaries can form a compact source of XUV/soft X-ray radiation by high-harmonic generation (HHG) [1]. Maximization of the frequency conversion efficiency requires a detailed understanding of the atomic interaction mechanism as well as the propagation properties of both the near-infrared pump in the presence of a partially ionized gas and of the generated XUV. Here we focus on the numerical simulation of pulse propagation in a parameter regime dominated by plasma effects and by the nonlinear properties of ionization, and compare the results with experimental observations.\",\"PeriodicalId\":346720,\"journal\":{\"name\":\"CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference\",\"volume\":\"236 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLEOE-EQEC.2009.5196318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOE-EQEC.2009.5196318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonlinear optical mode coupling by ionization in an Ar-filled capillary with high-power short-pulse excitation
High-power ultrashort laser pulses at near-infrared wavelengths propagating in gas-filled capillaries can form a compact source of XUV/soft X-ray radiation by high-harmonic generation (HHG) [1]. Maximization of the frequency conversion efficiency requires a detailed understanding of the atomic interaction mechanism as well as the propagation properties of both the near-infrared pump in the presence of a partially ionized gas and of the generated XUV. Here we focus on the numerical simulation of pulse propagation in a parameter regime dominated by plasma effects and by the nonlinear properties of ionization, and compare the results with experimental observations.