Chaymae Chouiekh, Ali Yahyaouy, A. Aarab, Abdelouahed Sabri
{"title":"道路交通:深度q -学习智能体控制十字路口交通灯。","authors":"Chaymae Chouiekh, Ali Yahyaouy, A. Aarab, Abdelouahed Sabri","doi":"10.1109/ISCV54655.2022.9806135","DOIUrl":null,"url":null,"abstract":"In recent decades, road traffic has increased in line with the attractiveness of cities. As a result, motorists are increasingly faced with traffic jams, which have many consequences. To find solutions to this problem, it is necessary to understand the origin of congestion. this is why this document proposes a strategy for managing intersections by controlling traffic signals at an intersection aimed at reducing the rate of congestion where we present a deep reinforcement learning (Deep RL) model that is a development and implementation work of the deep Q-learning algorithm that manages an agent in a simulated traffic environment using the SUMO (Simulation of Urban Mobility) traffic Road Simulator.","PeriodicalId":426665,"journal":{"name":"2022 International Conference on Intelligent Systems and Computer Vision (ISCV)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Road Traffic: Deep Q-learning Agent Control Traffic lights in the intersection.\",\"authors\":\"Chaymae Chouiekh, Ali Yahyaouy, A. Aarab, Abdelouahed Sabri\",\"doi\":\"10.1109/ISCV54655.2022.9806135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent decades, road traffic has increased in line with the attractiveness of cities. As a result, motorists are increasingly faced with traffic jams, which have many consequences. To find solutions to this problem, it is necessary to understand the origin of congestion. this is why this document proposes a strategy for managing intersections by controlling traffic signals at an intersection aimed at reducing the rate of congestion where we present a deep reinforcement learning (Deep RL) model that is a development and implementation work of the deep Q-learning algorithm that manages an agent in a simulated traffic environment using the SUMO (Simulation of Urban Mobility) traffic Road Simulator.\",\"PeriodicalId\":426665,\"journal\":{\"name\":\"2022 International Conference on Intelligent Systems and Computer Vision (ISCV)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Intelligent Systems and Computer Vision (ISCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCV54655.2022.9806135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Intelligent Systems and Computer Vision (ISCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCV54655.2022.9806135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Road Traffic: Deep Q-learning Agent Control Traffic lights in the intersection.
In recent decades, road traffic has increased in line with the attractiveness of cities. As a result, motorists are increasingly faced with traffic jams, which have many consequences. To find solutions to this problem, it is necessary to understand the origin of congestion. this is why this document proposes a strategy for managing intersections by controlling traffic signals at an intersection aimed at reducing the rate of congestion where we present a deep reinforcement learning (Deep RL) model that is a development and implementation work of the deep Q-learning algorithm that manages an agent in a simulated traffic environment using the SUMO (Simulation of Urban Mobility) traffic Road Simulator.