协变量和概念漂移的树适应机制

Felipe Leno da Silva, Raphael Cóbe, R. Vicente
{"title":"协变量和概念漂移的树适应机制","authors":"Felipe Leno da Silva, Raphael Cóbe, R. Vicente","doi":"10.52591/2021072414","DOIUrl":null,"url":null,"abstract":"Although Machine Learning algorithms are solving tasks of ever-increasing complexity, gathering data and building training sets remains an error prone, costly, and difficult problem. However, reusing knowledge from related previouslysolved tasks enables reducing the amount of data required to learn a new task. We here propose a method for reusing a tree-based model learned in a source task with abundant data in a target task with scarce data. We perform an empirical evaluation showing that our method is useful, especially in scenarios where the labels are unavailable in the target task.","PeriodicalId":196347,"journal":{"name":"LatinX in AI at International Conference on Machine Learning 2021","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Tree-Adaptation Mechanism for Covariate and Concept Drift\",\"authors\":\"Felipe Leno da Silva, Raphael Cóbe, R. Vicente\",\"doi\":\"10.52591/2021072414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although Machine Learning algorithms are solving tasks of ever-increasing complexity, gathering data and building training sets remains an error prone, costly, and difficult problem. However, reusing knowledge from related previouslysolved tasks enables reducing the amount of data required to learn a new task. We here propose a method for reusing a tree-based model learned in a source task with abundant data in a target task with scarce data. We perform an empirical evaluation showing that our method is useful, especially in scenarios where the labels are unavailable in the target task.\",\"PeriodicalId\":196347,\"journal\":{\"name\":\"LatinX in AI at International Conference on Machine Learning 2021\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LatinX in AI at International Conference on Machine Learning 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52591/2021072414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LatinX in AI at International Conference on Machine Learning 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52591/2021072414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管机器学习算法正在解决日益复杂的任务,但收集数据和构建训练集仍然是一个容易出错、成本高昂且困难的问题。然而,重用先前解决的相关任务中的知识可以减少学习新任务所需的数据量。本文提出了一种将在数据丰富的源任务中学习到的基于树的模型重用到数据稀缺的目标任务中的方法。我们执行了一个经验评估,表明我们的方法是有用的,特别是在目标任务中标签不可用的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Tree-Adaptation Mechanism for Covariate and Concept Drift
Although Machine Learning algorithms are solving tasks of ever-increasing complexity, gathering data and building training sets remains an error prone, costly, and difficult problem. However, reusing knowledge from related previouslysolved tasks enables reducing the amount of data required to learn a new task. We here propose a method for reusing a tree-based model learned in a source task with abundant data in a target task with scarce data. We perform an empirical evaluation showing that our method is useful, especially in scenarios where the labels are unavailable in the target task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信