{"title":"高超声速高钝锥上不同回流射流减热数值研究","authors":"M. Gerdroodbary, M. Fayazbakhsh","doi":"10.1260/1759-3107.2.1.1","DOIUrl":null,"url":null,"abstract":"In this paper, the effectiveness of counterflowing jets as heat-reduction devices for large-angle blunt cones flying at hypersonic Mach numbers is numerically simulated with various coolant jets. Different jet conditions have been chosen to investigate the effect of the counterflow jet on the surrounding flow field of nose cone. The compressible, unsteady, axisymmetric Navier-Stokes equations are solved with SST turbulence model for free stream Mach number of 5.75 at 0° angle of attack with and without gas injection. The coolant gas (air, Carbon Dioxide, and helium) is chosen to inject into the hypersonic flow at the nose of the model. The numerical results presented the surface heat reduction for different coolant jets. According to the investigation of various conditions of opposing jets, important phenomena of flow field and some effective jet conditions are found.","PeriodicalId":350070,"journal":{"name":"International Journal of Hypersonics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Numerical Study on Heat Reduction of Various Counterflowing Jets over Highly Blunt Cone in Hypersonic Flow\",\"authors\":\"M. Gerdroodbary, M. Fayazbakhsh\",\"doi\":\"10.1260/1759-3107.2.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the effectiveness of counterflowing jets as heat-reduction devices for large-angle blunt cones flying at hypersonic Mach numbers is numerically simulated with various coolant jets. Different jet conditions have been chosen to investigate the effect of the counterflow jet on the surrounding flow field of nose cone. The compressible, unsteady, axisymmetric Navier-Stokes equations are solved with SST turbulence model for free stream Mach number of 5.75 at 0° angle of attack with and without gas injection. The coolant gas (air, Carbon Dioxide, and helium) is chosen to inject into the hypersonic flow at the nose of the model. The numerical results presented the surface heat reduction for different coolant jets. According to the investigation of various conditions of opposing jets, important phenomena of flow field and some effective jet conditions are found.\",\"PeriodicalId\":350070,\"journal\":{\"name\":\"International Journal of Hypersonics\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hypersonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1260/1759-3107.2.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hypersonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1260/1759-3107.2.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical Study on Heat Reduction of Various Counterflowing Jets over Highly Blunt Cone in Hypersonic Flow
In this paper, the effectiveness of counterflowing jets as heat-reduction devices for large-angle blunt cones flying at hypersonic Mach numbers is numerically simulated with various coolant jets. Different jet conditions have been chosen to investigate the effect of the counterflow jet on the surrounding flow field of nose cone. The compressible, unsteady, axisymmetric Navier-Stokes equations are solved with SST turbulence model for free stream Mach number of 5.75 at 0° angle of attack with and without gas injection. The coolant gas (air, Carbon Dioxide, and helium) is chosen to inject into the hypersonic flow at the nose of the model. The numerical results presented the surface heat reduction for different coolant jets. According to the investigation of various conditions of opposing jets, important phenomena of flow field and some effective jet conditions are found.