E. Korolkova, D. Kudinov, K. Artemev, Wisam Farjow, Xavier N Fernando
{"title":"一种新型透地通信系统的技术进展","authors":"E. Korolkova, D. Kudinov, K. Artemev, Wisam Farjow, Xavier N Fernando","doi":"10.1109/CCECE.2018.8447532","DOIUrl":null,"url":null,"abstract":"The ability to communicate is critical aspect of safety in underground mine operations, where conventional radio communication technology is severely limited or not reliable due to disaster. Once again we can determine that the benefits obtained from the principle of the Through-the-Earth (TTE) system can be utilized. This paper presents a new modeling technique in characterizing the electric field strength in connections with the propagation of the waves through the strata of the underground mines. This modeling technique was validated practically in a real mine site environment in Irtishskiy mine, Kazakhstan. Our model considered number of parameters that are critical to performance of the system such as transmitting power, frequency, geometry of antenna and system grounding. To the best of our knowledge, this paper presents a novel analyses and modeling results demonstrating the effects of different grounding systems designs on the wave propagation behaviors in TTE systems. It is evident that this research can be applied in enhancing the performance of the TTE systems and the depth of signal propagations.","PeriodicalId":181463,"journal":{"name":"2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Technological Advancement for a Novel Through-the-Earth Communication System\",\"authors\":\"E. Korolkova, D. Kudinov, K. Artemev, Wisam Farjow, Xavier N Fernando\",\"doi\":\"10.1109/CCECE.2018.8447532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to communicate is critical aspect of safety in underground mine operations, where conventional radio communication technology is severely limited or not reliable due to disaster. Once again we can determine that the benefits obtained from the principle of the Through-the-Earth (TTE) system can be utilized. This paper presents a new modeling technique in characterizing the electric field strength in connections with the propagation of the waves through the strata of the underground mines. This modeling technique was validated practically in a real mine site environment in Irtishskiy mine, Kazakhstan. Our model considered number of parameters that are critical to performance of the system such as transmitting power, frequency, geometry of antenna and system grounding. To the best of our knowledge, this paper presents a novel analyses and modeling results demonstrating the effects of different grounding systems designs on the wave propagation behaviors in TTE systems. It is evident that this research can be applied in enhancing the performance of the TTE systems and the depth of signal propagations.\",\"PeriodicalId\":181463,\"journal\":{\"name\":\"2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCECE.2018.8447532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.2018.8447532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Technological Advancement for a Novel Through-the-Earth Communication System
The ability to communicate is critical aspect of safety in underground mine operations, where conventional radio communication technology is severely limited or not reliable due to disaster. Once again we can determine that the benefits obtained from the principle of the Through-the-Earth (TTE) system can be utilized. This paper presents a new modeling technique in characterizing the electric field strength in connections with the propagation of the waves through the strata of the underground mines. This modeling technique was validated practically in a real mine site environment in Irtishskiy mine, Kazakhstan. Our model considered number of parameters that are critical to performance of the system such as transmitting power, frequency, geometry of antenna and system grounding. To the best of our knowledge, this paper presents a novel analyses and modeling results demonstrating the effects of different grounding systems designs on the wave propagation behaviors in TTE systems. It is evident that this research can be applied in enhancing the performance of the TTE systems and the depth of signal propagations.