具有三对角突触连接的随机伪自旋神经网络

R. Peleshchak, V. Lytvyn, I. Peleshchak, V. Vysotska
{"title":"具有三对角突触连接的随机伪自旋神经网络","authors":"R. Peleshchak, V. Lytvyn, I. Peleshchak, V. Vysotska","doi":"10.1109/SIST50301.2021.9465998","DOIUrl":null,"url":null,"abstract":"This paper proposes a simplified architecture of the pseudospin neural network, which is based on the transformation of the synaptic link matrix into a tridiagonal Hessenberg Matrix (hessenberg neural network). In this case, the interaction between all pseudospin neurons does not disappear, but is taken into account in renormalized connections between the nearest neighboring pseudospin neurons. It is shown that with an increase in the number of neurons, the time to establish synaptic connections (per iteration) in the Hessenberg neural network relative to the time to establish synaptic connections (per iteration) in a fully connected synaptic neural network decreases according to a hyperbolic law.","PeriodicalId":318915,"journal":{"name":"2021 IEEE International Conference on Smart Information Systems and Technologies (SIST)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stochastic Pseudo-Spin Neural Network with Tridiagonal Synaptic Connections\",\"authors\":\"R. Peleshchak, V. Lytvyn, I. Peleshchak, V. Vysotska\",\"doi\":\"10.1109/SIST50301.2021.9465998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a simplified architecture of the pseudospin neural network, which is based on the transformation of the synaptic link matrix into a tridiagonal Hessenberg Matrix (hessenberg neural network). In this case, the interaction between all pseudospin neurons does not disappear, but is taken into account in renormalized connections between the nearest neighboring pseudospin neurons. It is shown that with an increase in the number of neurons, the time to establish synaptic connections (per iteration) in the Hessenberg neural network relative to the time to establish synaptic connections (per iteration) in a fully connected synaptic neural network decreases according to a hyperbolic law.\",\"PeriodicalId\":318915,\"journal\":{\"name\":\"2021 IEEE International Conference on Smart Information Systems and Technologies (SIST)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Smart Information Systems and Technologies (SIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIST50301.2021.9465998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Smart Information Systems and Technologies (SIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIST50301.2021.9465998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种简化的伪自旋神经网络结构,该结构基于将突触连接矩阵转换为三对角线Hessenberg矩阵(Hessenberg neural network)。在这种情况下,所有伪自旋神经元之间的相互作用不会消失,而是在最近的相邻伪自旋神经元之间的重归一化连接中被考虑。结果表明,随着神经元数量的增加,Hessenberg神经网络中突触连接的建立时间(每次迭代)相对于全连接突触神经网络中突触连接的建立时间(每次迭代)按双曲规律减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Pseudo-Spin Neural Network with Tridiagonal Synaptic Connections
This paper proposes a simplified architecture of the pseudospin neural network, which is based on the transformation of the synaptic link matrix into a tridiagonal Hessenberg Matrix (hessenberg neural network). In this case, the interaction between all pseudospin neurons does not disappear, but is taken into account in renormalized connections between the nearest neighboring pseudospin neurons. It is shown that with an increase in the number of neurons, the time to establish synaptic connections (per iteration) in the Hessenberg neural network relative to the time to establish synaptic connections (per iteration) in a fully connected synaptic neural network decreases according to a hyperbolic law.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信